picailecal] TUTORIAL
1‘6" Differentiable Optimization

1JCAI 2022 Tutorial;

Differentiable Optimization: Integrating Structural
Information Into Training Pipeline

(Decision-focused Learning)
July 25th 14:00-17:30 @ T29 Lehar 1

&

e TuToRAL .. Tutorial Schedule

[14:00-15:00] Differentiable optimization-based modeling for machine learning
Brandon Amos ¢ Meta Al (FAIR) (presented by Andrew Perrault and Kai Wang)

[15:00-15:30] Break

[15:30-16:30] Decision-focused learning: theory, applications, challenges
Andrew Perrault ¢ The Ohio State University

[16:30-17:30] Scalability challenges and solutions to decision-focused learning
Kai Wang e Harvard University

Differentiable optimization-based

modeling for machine learning

Brandon Amos ¢ Meta Al (FAIR)

Presented by Andrew Perrault, Kai \Wang

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond,
Priya Donti, lvan Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

Can we throw big neural networks at every problem?

(Maybe) Neural networks are soaring in vision, RL, and language

KN -

)

{ AGI: A pile of linear algebra’?\

Brandon Amos Optimization-Based Modeling for Machine Learning 4

Optimization-based modeling for machine learning

3 Model [—
)
{ S 3 Optimization Layer _ |
)
{ Zi.1 = argmin fg(z, z;) \

Z
subjectto z € Cg(z, z;)

Adds domain knowledge and hard constraints to your modeling pipeline
Integrates and trains nicely with your other end-to-end modeling components
Applications in RL, control, meta-learning, game theory, optimal transport

Brandon Amos Optimization-Based Modeling for Machine Learning

Why optimization-based modeling?

Non-trivial reasoning operations are fundamentally optimization problems

Why unnecessarily approximate them? (e.g. with a neural network)
Explicitly model the optimization components and learn the rest (when possible)

Optimally transport between MNIST digits

Y T3S I H) 6é& |
Oz {65697973
5§05 2&S 0 6§ VY
d 4 692234 |30
|l 79/ | sbB | 6
728385670314
A3 9440 b9y
§ & 50040393
1877486)77

Brandon Amos Optimization-Based Modeling for Machine Learning

Optimization layers model hard constraints

True Constraint (Unknown to the model) . Constraint Predictions During Training

Example 1 Example 2 Example 1 Example 2

Example 3 Example 4

Example 3 Example 4

Brandon Amos Optimization-Based Modeling for Machine Learning

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup
Differentiable optimization theory and practice — core

Differentiable control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 8

Convex optimization is expressive

The argmin of a convex optimization problem is non-convex and expressive
Standard non-linearities to be seen as solutions to convex optimization problems
We'll start simple for intuition and motivation to generalize beyond these

y*(x) = argmin f(y;x) subjectto y € C(x)
y

Brandon Amos Optimization-Based Modeling for Machine Learning

The RelLU is a convex optimization layer

Proof: Comes from first-order optimality (section 2 of my thesis)

5,

ReLU(x) = max{0, x}

L |

,,

,,

ReLU(x) = argmin |y — x||5
y
st. y=0

Brandon Amos Optimization-Based Modeling for Machine Learning 10

The sigmoid Is a convex optimization layer

Proof: Comes from first-order optimality (section 2 of my thesis)

1.0 g

o(x) = 1+ exp {—x} 06

‘)00
o(x) = argmin —y'x —Hy(y) ..
y

st. 0<y<1 0.0k

Brandon Amos Optimization-Based Modeling for Machine Learning 11

The softargmax is a convex optimization layer

Proof: Comes from first-order optimality (section 2 of my thesis)

exp X

Ta(x) = 2 exXp X;

|

ma(x) = argmin —y'x — H(y)
y
S.T.

T
1 Y = 1 Contours of the entropy H(y) over the simplex

Brandon Amos Optimization-Based Modeling for Machine Learning

12

How can we generalize this?

z;+1(z;) = argmin fy(z,z;) subjectto z € Cy(z, z;)
VA

Derivatives and backpropagation

For learning, we differentiate or backpropagate through these layers — differentiable optimization
Easy if the optimization problem has an explicit, closed-form solution (often standard differentiation)

Otherwise, need to use implicit differentiation, which is also used for sensitivity analysis

Brandon Amos Optimization-Based Modeling for Machine Learning 13

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup
Differentiable optimization theory and practice — core

Differentialble control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 14

The Implicit Function Theorem

[Dini 1877, Dontchev and Rockafellar 2009]

Contour of g(x,y) defining an implicit function

Given an implicit function f(x): R" - R™ . f(x)
defined by f(x) € {y: g(x,y) = 0} where 10y :
g(xly).[RnXRm_)R : : E
0.8 o .
How can we compute D, f (x)? LA AT
0.6 EEe . fffffffffffff
The Implicit Function Theorem gives Y | : |
0.4 BT - - A
1 | (A
Dyf(x) = _Dyg(x;f(x)) ng(x;f(x)) | E |
0.2 R R
under mild assumptions Dy, g(x, f(x))
0.07 -4 —2 0 4

Brandon Amos Optimization-Based Modeling for Machine Learning 15

Implicitly differentiating a convex quadratic program

Original problem considered in OptNet
1
x* = argmin ExTQx +p'x
X

subjectto Ax =b Gx<h

4
4

Implicitly differentiating R gives Dy (z*) = —(DZSR(Z*))_lDQIR(Z*)

KKT Optimality
Find z* s.t. R(z%,0) = 0

Brandon Amos Optimization-Based Modeling for Machine Learning 16

Background: cones and conic programs

Most convex optimization problems can be transformed into a (convex) conic program

x* = argmin c'x
X
subjectto b —Ax € K
Zero: {0}
Free: R"
Non-negative: R}
Second-order {(t,x) € Ry xXR"|||x]||, < t}

Semidefinite: S%
Exponential: {(x,y,2) € R3|ye*Y < z,y > 0} U R_x{0}xR,

Cartesian Products: X = KX ---XX,

Brandon Amos Optimization-Based Modeling for Machine Learning

17

Implicitly differentiating a conic program

Section 7 of my thesis

*

x* = argmin c'x
X

subjectto b —Ax € K

4
4

Implicitly differentiating R gives D, (z*) = —(DZR(Z*))_lDH:R(z*)

Conic Optimality
Find z* s.t. R(z*,0) = 0

Brandon Amos Optimization-Based Modeling for Machine Learning

18

Applications of differentiable convex optimization

Learning hard constraints

Modeling projections

Game theory

RL and control

Meta-learning

Energy-based learning and structured prediction

Amortized optimization

Brandon Amos Optimization-Based Modeling for Machine Learning

19

From the softmax to soft/differentiable top-k

Constrained softmax, constrained sparsemax, Limited Multi-Label Projection

y*= argmin —y'x — H(y) y* = argmin —y'x — Hp(y)
y # y
subject to subject to

sigmoid softmax

011 111

001

1010
0101

2110

000 100

Contours of the entropy penaltles
Brandon Amos Optimization-Based Modeling for Machine Learning 20

Differentiable permutations, sorting and SVMs

Differentiable permutations and sorting (Gumbel-Sinkhorn)
Projection onto the Birkhoff polytope B):

Py x = S(9(X,0)/7)

Pg;-(()?)zX

X
S (—) = argmax (P, X)r+tH(P)
T PEBN

Differentiable SVMs (MetaOptNet)
Differentiate the decision boundary w.r.t. the dataset -

w* = argmin |[w]|? + C E max{0, 1 — y;f (x;)}
w -
l

. 0
- {E"’}:]

Test Example

Brandon Amos Optimization-Based Modeling for Machine Learning 21

Optimization layers need to be carefully implemented

dQz* + Qdz + dg + dATv*+

il ~T * invQ_AT = A.transpose(l, 2).lu_solve(*Q_LU)
ATdy +dGTX*+ GTdA =0 Q A G dﬂ? R A_invQ_AT = torch.bmm(A, invQ_AT)
S i I db—0 A 0 0 ’;‘ — — 0 G_invQ_AT = torch.bmm(G, invQ_AT)
VA A = o
D(G * h)d)\ & D()*)(dG * 5 Gd . dh) . 0 G O O d; 0 LU_A_invQ_AT = lu_hack(A_invQ_AT)
z z z — P_A_invQ_AT, L_A_invQ_AT, U_A_invQ_AT = torch.lu_unpack(*
Q GT AT d dQ d dGTA dAT P_A_invQ_AT = P_A_invQ_AT.type_as(A_invQ_AT)
2 i Z* —dg — * I/*
S_LU_11 = LU_A_invQ_AT[@]
D()‘*)G D(Gz* - h) 0 dA| = _D(’*)dGZ* + D()‘*)dh U_A_invQ_AT_inv = (P_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz*+ db).lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
- ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
Tt At Ten At1 S_LU_12 = U_A_invQ_AT.bmm(T)
i o E E i [] [. i 1 S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
R R EEE Rt SRR LR RN L :) Vol = =(d ZT +sz V.l =d S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
G By i T Ct ¢ 2(‘)) ‘ torch. cat((S_LU_21, S_LU_22), 2)),
S ——— R Ml S| Vat=d, T +vdt Vil = —d, 1
: —I| : Tt+1 Ct+1 = S_LU_pivots[:, :neq] = LU_A_invQ_AT[1]
{O\| Ciar Fip Afi1 Jee1 Vel = D(/*)(d,\zT + /\dZ) Vil = —D(/*)d)\
______________________ Foyo 0 ; . R -= G_invQ_AT.bmm(T)
Bl T or 1 ol . 1
; ‘ =5 e +ned) o—=d, [&] @ GTD(\) AT [Vl
K |G| Vet t Ct d\| =-|G D@Gz-h) 0 0
At O ag . R 7_* +)* R d* ag — d* d,, A 0 0 0
. . OF, At41 t t+1 Tt 8ft At

Brandon Amos Optimization-Based Modeling for Machine Learning 22

Why should practitioners care?

D(Gz* — h)d\ + D

dQz* + Qdz + dg + dATv*+
ATdy +dGTX* + GTdA =0

Q AT GT] [a \V
dAz + Adz—db=0 |4 0 0 d% =—1 0
Lcdz—dny =0 LG 0 0] [d] 0

Q GT dz —dQz* — dg — dGT X * — dATV*
D(\YG D(Gz*—h) 0 —D(A*)dGz* + D(*)dh
A 0 0 dv —dAz* + db
Tt At ATt+1 At+1 :
”””” &/ L S et I I o c
,,,,,,, By I;[_IO]F T?El = +vd! V!
[o] G B o P50 = D(X*)(dr2” +2dT) Vipl=—D
. Fi .

.Brzandon Amas

oY

1
=3 (df. @ 7F + 17 ®@dL) e d;,
toJ4
d§t+1 ® Tt*)\:—Fl ® d:'t aft Kt

Optimization-Based Modeling for Machine Learning

invQ_AT = A.transpose(1l, 2).lu_solve(*Q_LU)
A_invQ_AT = torch.bmm(A, invQ_AT)
G_invQ_AT = torch.bmm(G, invQ_AT)

LU_A_iNVQ_AT = lu_hack”” 4
P_A_iNVQAT, LA~ _A_invQ_AT = torch.lu_unpack(*
P_A_invQ_AT AT . type_as(A_invQ_AT)

g U A_INVQ_AT[O]
_AnVQAT_inv = (P_A_InvQ AT.bmm(L_A_invQ_AT)
). lu_solve(*LU_A_invQ_AT)

S_LU_21 = G_invQ AT.bmm(U_A_invQ_AT_inv)

T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)

S_LU_12 = U_A_invQ_AT.bmm(T)

S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)

S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
torch.cat((S_LU_21, S_LU_22), 2)),
1

S_LU_pivots[:, :neq] = LU_A_invQ_AT[1]

~O_AT.bmm(T)

Q GTD V..
=— |G DGz -h
A 0

23

Differentiable convex optimization layers

NeurlPS 2019 and officially in CVXPY!
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

C\Xpy O

x*(0) = argmin f(x;0)

X
subjectto g(x;60) <0

h(xi6) = 0 Tensor

locuslab.github.i10/2019-10-28-cvxpylayers

Brandon Amos Optimization-Based Modeling for Machine Learning

24

A new way of rapidly prototyping optimization layers

Backprop

cvxpy optimization layer

Inputs [C= ++E=p [~ .y, —argmin forzp | *" 59| Loss

Z

s.t. z € Cg(z;)

Parameters Canonicalized
Problem Cone Program E— —
. X . one rogram rlglna roblem
Variables .
rl Objective . T Solution > Solution E?
Constraints arg}rcmn X
Constants st. Ax <y b

Brandon Amos Optimization-Based Modeling for Machine Learning 25

Brandon Amos

[Y

— O O O~ Outpx W -

Code example: OptNet QP

Before: 1k lines of code

-

1
Zi+1 = argmin EZTQ(ZL')Z + CI(Zi)TZ\

Now: 10 lines of code

Z
subjectto A(z;)z = b(z;)
G(z;)z < h(z;)

\Parameters/Submodules :0,q9,4,b,G, hj

Q = cp.Parameter((n, n), PSD=True)

p = cp.Parameter(n)

A = cp.Parameter((m, n)) import cvzpy as cp

b = cp.Parameter(m) :

G = cp.Parameter ((p, n)) from cvxpyth import CvxpyLayer
h = cp.Parameter(p)

x = cp.Variable(n)

obj = cp.Minimize (0.5*cp.quad_form(x, Q) + p.T * x)

cons = [A*x == b, G*x <= h]

prob = cp.Problem(obj, cons)

layer = CvxpyLayer (prob, params=[Q, p, A, b, G, h]l, out=[x])

Optimization-Based Modeling for Machine Learning

260

Brandon Amos

Code example: the sigmoid

1 y*= argmin —y'x — Hy(y)

T 14 ex y
e subjectto 0 <y <1

y

1{x = cp.Parameter(n)

2|y = cp.Variable(n)

3|obj = cp.Minimize(-x.T*y - cp.sum(cp.entr(y) + cp.entr(i.-y)))
4| prob = cp.Problem(obj)

5|layer = CvxpyLayer(prob, params=[x], out_vars=[y])

The Sigmoid Function in Optimization Form The Derivative of the Sigmoid Function in Optimization Form
0.25 -

0.20 -
0.15 -
M
=
0.10 -

0.05 -

0.00 -

Optimization-Based Modeling for Machine Learning

27

Code example: constraint modeling

LA A 4 4
Veee

. 1 5
¢y = argmin §|Ip — 9yl
Yy
s.t. Gy<h

<o P Q

obj

cons
prob
laye

00~ O Ot s W~

cp.Parameter ((m, n))

cp.Parameter (m)

cp.Parameter (n)

cp.Variable(n)

= cp.Minimize (0.5%cp.sum_squares (y-p))

[Gxy <= h]

cp.Problem(obj, cons)

r = CvxpylLayer (prob, params=[p, G, h], out=[y])

Brandon Amos

00~ O O W IN -

5 ., A 2
§ = argmin Z[[p —y]l;
Y
1 T
s.t. i(y—z) Aly—2) <1
A = cp.Parameter ((n, n), PSD=True)
z = cp.Parameter(n)
p = cp.Parameter(n)
y = cp.Variable(n)
obj = cp.Minimize (0.5*cp.sum_squares (y-p))
cons = [0.5*cp.quad_form(y-z, A) <= 1]
prob = cp.Problem(obj, cons)
layer = CvxpyLayer (prob, params=[p, A, z], out=[y])

Optimization-Based Modeling for Machine Learning

Connections to sensitivity and perturbation analysis

Adjoint derivatives for optimization problems have been studied for decades
We have focused on uses for learning, but also widely used for sensitivity analysis

Logistic regression example
Find optimal decision boundary: 6

0* € argmax E log pg (v; | x;)
0 .
l

Use derivatives for sensitivity to the data points: d EP%

00*
axi

How much the data impacts the decision boundary BT

Brandon Amos Optimization-Based Modeling for Machine Learning 29

How do we handle non-convex optimization layers?

- -

-

Model

)

{ » Optimization Layer » |
)

{ Ziyq = argmin fy(z,z;) \
Z
subjectto z € Cy(z, z;)

If non-convex:
1. Implicitly differentiate the fixed-point of a non-convex solver

2. Unroll gradient steps V., f if unconstrained
3. Unroll steps of another optimizer

Brandon Amos Optimization-Based Modeling for Machine Learning

30

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup
Differentiable optimization theory and practice — core

Differentiable control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 31

Should RL policies have a system dynamics model or not?

[Policy NEWTE] '

Network(s)

w System . Future

| Dynamics Plan |

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Optimization-Based Modeling for Machine Learning 32

Known or learned from data

Brandon Amos

System
Dynamics

Initial State

Model Predictive Gontrol

Model Predictive Control

Finds an optimal future trajectory

> Optimal actions
to take next

Optimization-Based Modeling for Machine Learning

33

Why model predictive control?

Powerfully deployed in robotic systems, autonomous vehicles, aerospace settings, and beyond

AT U
LSRR L U W)
| i O
@‘ e \ v
- C0) U\)
= Wy

o

Brandon Amos Optimization-Based Modeling for Machine Learning

34

Brandon Amos

Model Predictive Gontrol

A pure planning problem given cost and dynamics:

(TI:T = argmin Z Co(T:)|Cost

subject to x; = Xjpjt

Xe+1 = |fp () Dynamics
usu<u
_ ,

_

Optimization-Based Modeling for Machine Learning

35

Challenge: complex systems are difficult to model

Modeling complex systems in the world is challenging
Often resort to data-driven approaches and learning to estimate unknown parts

(TI:T = argmin Z Co(7¢)|Cost
T1.T t s}t\‘i‘\‘ A\ Y
subject to x; = Xjpjit
X¢+1 =|fo(7¢)Dynamics
ususu

_ _ J

Brandon Amos Optimization-Based Modeling for Machine Learning

Standard model-based control training pipeline

Y Control) Interacts

[Dynamics fg | >[Policy mg(x) | >[Environment]

Training: Maximum Likelihood \ lResponses

[Trajectories [State Transitions] [Reward]]

Brandon Amos Optimization-Based Modeling for Machine Learning 37

Standard model-based control training pipeline
objective mismatch: dynamics unaware of reward

Similar to problems arising in predict then optimize settings

) Interacts

Control ,
[Dynamics fy | —— >[Policy mg(x) | >[Environment]
Training: Maximum Likelihood \ Objective Mismatch lResponses
[Trajectories [State Transitions] Reward]]

Brandon Amos Optimization-Based Modeling for Machine Learning 38

Potential solutions to objective mismatch

Control Interacts

[Environment]

Objective Mismatch* Responses |
|
Reward]]

1. Re-weight states to focus on high-value or high-advantage regions

[Dynamics fg |=— [Policy mg(x) |=—p>]

Training: Maximum Likelihood \

[Trajectories [State Transitions

2. This talk: use differentiable optimization to connect the dynamics and reward signal

Brandon Amos Optimization-Based Modeling for Machine Learning 39

Differentiable Model Predictive Control
DY Model [—>

i
- m N — D~

What can we do with this?

Augment neural network policies in model-free algorithms with MPC policies
Replace the unrolled controllers in other settings

Fight objective mismatch by end-to-end learning dynamics
The cost can also be end-to-end learned! No longer need to hard-code in values

Brandon Amos Optimization-Based Modeling for Machine Learning

40

Differentiating LQR control is easy

Definition: Linear quadratic regulator

-~

T={xX¢, Ut}

S-t. xt+1 - FtTt + ft xO = xlnlt ----_.E ______

min z 1L CoTy + €Ty L
;

Tt At . Tt4+1
Cc, F
F —1 0]

Y

>\t+1.

Riccati recursion solves the KKT system:
K

Ct
Jt
Ct+1
ft+1

Backward pass: implicitly differentiate the LQR KKT conditions:

o/ 1, ., . . . o o

a—cvt — 5 (th ® Tt + Tt ® th> 8Ct - th axil’lit o d>‘0 Where K
o . L ax . ot _

8_F’t _dAt—i-l ®Tt +)\t+1®d7't aft _d>\t

Just another LQR problem!

Brandon Amos

I

Tt

A

Optimization-Based Modeling for Machine Learning

V..l

Differentiating LQR control is easy

x| — |Vt

.. OH_ DY
*

Just another LQR problem! I'

Brandon Amos Optimization-Based Modeling for Machine Learning

Objective Mismatch: Optimizing the task loss is often
better than SysID in the unrealizable case

Approximate

Best Imitation Loss : Model Class

True Model Yi**"

True system: pendulum with noise (damping and a wind force)
Approximate model: pendulum without the noise terms

Best MSE

SysID Loss Imitation Loss
0.010 : .
0.005 - Liss | ~1.8x difference!
0.000, 50 100 150 200 250 0.0, 50 100 150 200 250
Epoch Epoch

M Vanilla Sysld Baseline M (Ours) Directly optimizing the Imitation Loss

Brandon Amos Optimization-Based Modeling for Machine Learning 43

Another control optimizer: the cross-entropy method

CEM iteratively refining Gaussians

Ilterative sampling-based optimizer that:
1. Samples from the domain

2. Observes the function’s values

3. Updates the sampling distribution

Powerful optimizer for control and model-based RL

Brandon Amos Optimization-Based Modeling for Machine Learning 44

The Differentiable Cross-Entropy Method (DCEM)

CEM iteratively refining Gaussians

Differentiate backwards through the sequence of samples
Using differentiable top-k (LML) and reparameterization

Useful when a fixed point is hard to find, or when unrolling
gradient descent hits a local optimum

A differentiable controller in the RL setting

Brandon Amos Optimization-Based Modeling for Machine Learning 45

DCEM can learn the solution space structure

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

x* = argmin f(x)
x€[0,1]N

Controls
1

Full Domain

Timestep Timestep Timestep Timestep

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Space of
optimal solutions

Controls

Timestep Timestep

Latent space
of optimal solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1

Brandon Amos Optimization-Based Modeling for Machine Learning 46

DCEM fine-tunes highly non-convex controllers

51tés qooqle'com/V1ew/d1ff —Cross-— entroov method

Brandon Amos Optimization-Based Modeling for Machine Learning

47

https://sites.google.com/view/diff-cross-entropy-method/home

Closing thoughts and future directions

Differentiable optimization is a powerful primitive to use within larger systems
 Theoretical and engineering foundations are here

« (Can be propagated through and learned, just like any layer

* Provides a perspective to analyze existing models and layers

Applicable where optimization expresses non-trivial modeling operations including game
theory, geometry, RL/control, meta-learning, energy-based learning, structured prediction

Extendable far beyond the (mostly convex) continuous Euclidean settings considered here

Brandon Amos Optimization-Based Modeling for Machine Learning 48

Differentiable optimization-based

modeling for machine learning

Brandon Amos ¢ Meta Al (FAIR)
W brandondamos “f1 bamos.github.io

Differentiable QPs: OptNet [[CML 2017]

Differentiable Stochastic Opt: Task-based Model Learning [NeurlPS 2017]
Differentiable MPC for End-to-end Planning and Control [NeurlPS 2018]
Differentiable Convex Optimization Layers [NeurlPS 2019]

Differentiable Optimization-Based Modeling for ML [Ph.D. Thesis 2019]
Differentiable Top-k and Multi-Label Projection [arXiv 2019]

Generalized Inner Loop Meta-Learning [arXiv 2019]

Objective Mismatch in Model-based Reinforcement Learning [L4DC 2020]
Differentiable Cross-Entropy Method [ICML 2020]

Differentiable Combinatorial Optimization: CombOptNet [ICML 2021]

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond,
Priya Donti, lvan Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

https://arxiv.org/abs/1703.00443
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers
https://github.com/bamos/thesis
https://github.com/bamos/thesis
https://arxiv.org/abs/1906.08707
https://arxiv.org/abs/1910.01727
https://arxiv.org/abs/2002.04523
https://arxiv.org/abs/1909.12830
https://arxiv.org/abs/2105.02343

