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Decision-focused Learning (Recap)

Maximize decision quality directly by
integrating optimization as a differentiable layer

Neural Network Optimization
> Predlctlon

Backprop Backprop

Two-stage learning

Decision quality

Public health Route planning Movie recommendation Portfolio optimization



Decision-focused Learning (Recap)

Maximize decision quality directly by
integrating optimization as a differentiable layer

Amos et al. ICML 2017

Neural Network Optimization
4 Prediction
I
I

Backprop

Decision quality

Research questlons
- Scalability: how to make decision-focused learning more efficient?
- Extension: how to extend to other optimization problems?



Outline

* Decision-focused Learning (Recap)

 Scalability and Applications in Different Optimization
Problems
« Convex/non-convex optimization
« Sequential optimization
» Multi-agent optimization

- Summary of Differentiable Optimization



Outline

 Scalability and Applications in Different Optimization
Problems

« Convex/non-convex optimization



Decision-focused Learning AAMAS 2020

Convex/non-convex optimization

Neural Network
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Optimization
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4 Prediction >

Backprop

Decision quality



Decision-focused Learning

Convex/non-convex optimization

Expensive!!

Forward path: solving
the planning problem

I

Decision quality

Expensive!!

Neural Network Prediction Optimization
> >
gi o max f(Z, 9)
VA
s.t. Az=b
£(2,0) ~ f(z0,0) + Vf - Az +%AZT V2f - Az Backprop Gz < h
=9(0) . —
Non-convex Convex Backward path: differentiating through l’
the planning problem
max f(z,0) max g(z,0)
z local z
sst.Az=b=>s.t. Az=Db
Gz<h Gz<h
o o\ —1
dz” = — b= KKT(z* QI 0 KKT(z*,0
C\Xpy OPyTorch  gg = "{gz "~ _]_ 30 z",0)
x*(0) = argmin f(x;0) %
subject to g(x; 6) < 0 Second-order derivative with size NXN
A(x;6) = 0 Tensor

Matrix inversion cost O(N®), w =~ 2.373

AAMAS 2020



Surrogate Decision-focused Learning  neurs 2020

imi i tlight
Convex/non-convex optimization spotlig

Forward path: solving i
the planning problem ’

Neural Network Prediction Optimization
>

o max f(z,0)
gi S.Zt. Az =b

Backprop Gz<h

>

Decision quality

Backward path: differentiating through l’
the planning problem




Surrogate Decision-focused Learning  neurs 2020

= . . spotlight
Convex/non-convex optimization

Neural Network Prediction
> 0

Decision quality



Surrogate Decision-focused Learning  neurrs 202

= . . spotlight
Convex/non-convex optimization |

Neural Network Prediction

=

0

Decision quality

Surrogate problem
max gp(y,0) = f(Py,0)
Surrogate = »

parameter ——» s.t. APy =b Jt — py
p GPy < h -y

i
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Surrogate Decision-focused Learning  neurrs 202

imi i tlight
Convex/non-convex optimization spotlig

Neural Network Prediction

= °

Decision quality

Surrogate problem
max gp(y,0) = f(Py,0)|g
Surrogate = »

parameter ——» s.t. APy =b Jt — py
p GPy < h -y

e |j _ _Bac
dy* 0 0
H = — |l KKT(y*,6 — KKT(y*,
10 (;y (v )_; 50 (y*,0)
Second-order derivative with size M XM < NXN
Matrix inversion cost 0(M?®), w =~ 2.373 11




Surrogate Decision-focused Learning  neurrs 202
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Convex/non-convex optimization |

Neural Network Prediction
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Decision quality

e

Surrogate problem

ro===1 [maxg,0.0) =70

| Surrogate |— ¥

| parameter |—> s.t. APy =0»b S5 = Py
: p | GPy < h R
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Surrogate Decision-focused Learning  neurrs 202

imi i tlight
Convex/non-convex optimization spotlig

Neural Network Prediction

= °

Decision quality

15

Surrogate problem

its: rF====n 0) = f(Py,0
Benefits: " Surrogate | max gp(y,0) = f(Py h
» Fast forward pass | parameter |—>, s. t. éﬁy =Ilz L = Py’
B _
 Fast backward pass I Y=

H_ o Backprop 1y
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Surrogate Decision-focused Learning  neurrs 202

= . . spotlight
Convex/non-convex optimization |

Neural Network Prediction

= °

Decision quality

15

Surrogate problem

e ———— ma 0) =f(Py,06
Benefits: " Surrogate | ax gr(7,0) = f(Py,6)g
» Fast forward pass | parameter —>|  S:t. APy =D Py
p GPy <h =y

« Fast backward pass SR
- Better generalization H: AN Backprop |
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Takeaway:
* Improve scalability by surrogate and dimension reduction
« Jointly learn the surrogate and the model




Decision-focused Learning

Convex/non-convex optimization

Forward path: solving
the planning problem

.

Neural Network Prediction Planning
>

o max f(z,0)
gi S.Zt. Az =b

Backprop Gz<h

Backward path: differentiating through
the planning problem

do

20

Decision quality

T

dz* 9 N o
= — IEKKT(Z*,O)I —KKT(z*,0)

Second-order derivative involved with size N?
Matrix inversion cost O(N%), w = 2.373
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Decision-focused Learning  asmwaszoo

Convex/non-convex optimization

Forward path: solving i
the planning problem ’

Neural Network Prediction Planning
>

o max f(z,0)
gi S.Zt. Az =b

Backprop Gz < h

Decision quality

Backward path: differentiating through l’
the planning problem

dz* 9 N o
= — IEKKT(Z*,O)I —KKT(z*,0)

do 20

Second-order derivative involved with size N2

Matrix inversion cost O(N®), w = 2.373 .



Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving i
the planning problem ’

Neural Network Prediction Planning
>

o max f(z,0)
gi S.Zt. Az =b

Backprop Gz < h

Decision quality

Backward path: differentiating through l’
the planning problem

Main idea: only backprop through a of decision variables
————— -1
dz- [0 R\ .
40 = —Ga—zK_KT_(Z_,Q_)D %KKT(Z ,9)

Second-order derivative involved with size N2

Matrix inversion cost O(N®), w = 2.373 s



Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving
the planning problem

.

Neural Network Prediction Planning
>

o max f(z,0)
gi S.Zt. Az =b

Backprop Gz<h

Backward path: differentiating through
the planning problem

>

Decision quality

T

Main idea: only backprop through a of decision variables
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Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving
the planning problem

Neural Network Prediction Planning
>

0 >
I;Ii may (2,4, )
§:t: Az=L p’
Backprop @Gz <hp’

Decision quality

Backward path: differentiating through
the planning problem

1. Solve z (forward) do
2. Randomly sample a subset C

‘leez to backprop (backward)

Algorithm: d 9
\o 90

~1
9,
—KKT (z%, 0)) —KKT (z%,0)

3. Compute

20



Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving
the planning problem

Neural Network Prediction Planning
> >
gi 6 max f(z.,z%.,0)
s.t. Az, =Db'
Backprop G'7-<h’

Decision quality

Backward path: differentiating through l‘
the planning problem

‘ 9

-1
I 9,
10 = _<:6_KKT (Z ,9))I %KKT (Z ,9)

Second-order derivative involved with size
Matrix inversion cost L w = 2.373
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Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving
the planning problem

Neural Network Prediction Planning
> >
gi 6 max f(z.,z%.,0)
s.t. Az, =Db'
Backprop G'7-<h’

Decision quality

Backward path: differentiating through l‘
the planning problem

l -1
. d 1o 0
Observations: V2l (L KKT.(2,6) | ~=KKT, (z",6)
: ] dO ! b 00
 More than quadratic speedup . —s N_ _ _ _ _ _
 Linearly less information Second-order derivative involved with size
Matrix inversion cost L w = 2.373

- Approximate stochastic gradient

22



Decision-focused Learning  aawaszo

Convex/non-convex optimization

Forward path: solving
the planning problem

Neural Network Prediction Planning
> >
Qi 6 max f(z.,z%.,0)
s.t. Az, =Db'
Backprop G'7-<h’

Decision quality

Backward path: differentiating through
the planning problem

Takeaway:
* Improve scalability by
« Approximate stochastic gradient descent




Experimental Results

Convex/non-convex optimization

Smuggling intervention
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Outline

 Scalability and Applications in Different Optimization
Problems

« Sequential optimization



Decision-focused Learning (Recap)

Sequential planning

Forward path: solving
the sequential problem

Sequential

Neural Network Prediction Planning Sequential

Policy

the planning problem

Backward path: differentiating throug;J

== = (V2Js (ﬂ*))_lvénfe (ﬂ*)é

« Policy optimality or Bellman optimality
» Policy gradient theorem

Expensive computation!!
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Public Health Challenges

Sequential planning

Forward path: solving
the sequential problem

Sequential
Neural Network Prediction Planning

0

Sequential
Policy

Backward path: differentiating through |’
the planning problem

Schedule service calls to Schedules service calls to

‘9% . a provide health information 99 DTS improve adherence of
L ..?éi i to pregnant women tuberculosis patients

Women and children enrolled Sakhis Trained
2019- As of March
2020 2 6 4 2 0 8 2020
4
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Public Health Challenges

Sequential planning

Sequential

Neural Network . Planning Sequential
. Prediction > Policy
% *
L8 [Z] g
| Backprop

Can decision-focused learning be applied to large-scale
sequential problems?

28



Public Health Challenges

Sequential planning

Sequential

Sequential

Neural Network ioti Planning | -
. Prediction L o2 Policy
A %
- [E4] ”
Backprop

Can decision-focused learning be applied to large-scale
sequential problems?

Key idea: leverage property of the sequential problems

29



Maternal and Child Health

Sequential planning

Sequential

Neural Network Prediction Planning
>

7] o
i Backprop uﬁ—ﬂ]

Predictive problem:
« Participants’ transition probabilities

Sequential planning (RMAB):
 Schedule service calls based on observed states

Sequential
Policy
n*

30



Maternal and Child Health

Sequential planning

Restless multi-|

Neural Network s 4 armed bandits | Sequ?ntim
. Prediction vt Policy
*

0 o
w4 T
gi Backprop uﬁ—ﬂ]

Predictive problem:

« Participants’ transition probabilities

Sequential planning (RMAB):
« Schedule service calls based on observed states -




Sequential Problem: Restless Bandits

 An extension of multi-armed bandits

* Restless state: arms are associated s S0 .. SuES
. ‘o . 1 2 N
with states and transition functions

* Action: select K out of N arms to pull a a; - ay€A={01}
« Goal: maximize total reward in T steps P1 P, ~ Py €ESXAXS->R
Sy Sz - SyES

PSPACE-hard to find the optimal solution!
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Sequential Problem: Restless Bandits

 An extension of multi-armed bandits

* Restless state: arms are associated s S0 .. SuES
. ‘o . 1 2 N
with states and transition functions

Pull the largest K

» Whittle index: the value of pulling 2(52)

W;(s;) := smallest subsidy m provided to not pulling (a = 0)
st. Qs a=0) =Q;(s,a=1)
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Maternal and Child Health

Sequential planning

Restless multi-|

Neural Network s 4 armed bandits | Sequ?ntim
. Prediction vt Policy
*

0 o
w4 T
gi Backprop uﬁ—ﬂ]

Predictive problem:

« Participants’ transition probabilities

Sequential planning (RMAB):
« Schedule service calls based on observed states -




Maternal and Child Health

Sequential planning

Neural Network

-

>

Prediction
7]

Restless multi-
armed bandits

15

Whittle
index

Whittle index planning

T

Top k
selection

Sequential
Policy

Whittle index policy

7.l.whlttle
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Whittle Index Differentiabilit

Sequential planning

Restless multi-
armed bandits

15

Neural Network

-

Prediction

Sequential

Policy
Tl'*

Whittle index planning

Whittle ‘ \ Top k
14
Main idea

index selection
 Differentiate through Whittle index policy
Whittle index

Top-k selection

ittle index policy
7.l.whittle
ackprop |‘

36



Whittle Index Differentiabilit

Sequential planning

Restless multi-
Neural Network Prediction armed bandits

=a 15

. . Whittle index planning
Whittle index T ‘ \ Ton K
Wi(si) — Sma”est m index W selection

s.t. subsidy m provided to not pulling ackprop l‘
‘[ Qi(s;,a=0) =Q;(s;,a=1)

Bellman equation parameterized by 6

Sequential
Policy

ittle index policy
whittle

T

Top-k selection Amos et al. (arXiv 2019), Xie et al. (NeurlPS 2020)
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Whittle Index Differentiabilit

Sequential planning

Restless multi-
Neural Network Prediction armed bandits

. 15

Whittle index planning

Whittle Top k
index W selection

Sequential
Policy

ittle index policy
whittle

T

ackprop |6

Takeaway: leverage approximate solution to bypass the
cost of differentiating through sequential problems
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Maternal and Child Health

Sequential planning

Scale up decision-focused learning to large sequential problem

Log-likelihood (accuracy) Engagement Performance

§ 2 " &
0 7 . « W

320

-500 \
600 = 310 &
300 AN
rando ecision-focuse randao

-700




Collaboration
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Outline

 Scalability and Applications in Different Optimization
Problems

» Multi-agent optimization



Stackelberg Games with Multiple Followers aaaizo22
Multi-agent planning

,/¢ Leader Applications

« Choose a strategy « € II first

« Receive a payoff f(z*,m) and a
constraint cost g(z*, )

Wildlife conservation Cybersecurity

O n followers

O O » Followers select strategies simultaneously to
form an equilibrium z* = [z4, z, ..., Z, ]

» Follower i receives f;(z*, m)

Public health Public safety
42



Stackelberg Games with Multiple Followers aaaizo22

Multi-agent planning
B

F

Leader

| Multi-agent |

Planning |

———m e B [T [ [e]))

Il

ackprop — = =
— Nash equilibrium quality |

*

n followers

43



Stackelberg Games with Multiple Followers aaaizo22

Multi-agent planning
Backprop @ [ —=—=—=—====-=

|
{&=========== | Nash equiliorium quality
F — — — m-mm 2|00 LA T T - —— e—— e—— ——

| Multi-agent |
Planning |

—l---f-—> decision
[

Leader n followers

Algorithm
* Run gradient descent to optimize Nash equilibrium quality

Main idea
+ Differentiability of Nash equilibrium and multi-agent planning
« Concatenate all the KKT conditions: KKTs = |KKT;, KKT,, ..., KKT,]

44



Stackelberg Games with Multiple Followers aaaizo22

Multi-agent planning
Backprop

Bilevel optimization {mm————— Nesh equ"'b;z‘r? ql;a“ty
zZ°, T
max f(z*, ) Multi-agent Joint
mell Planning

9 decision

s.t. 2 =0(n), gz*,m) <0

where O:I1 = Z* is an oracle that returns
a Nash equilibrium

. . dz’ df

Gradient-based algorithm - e
Challenge: gradient computation of
df(z"m) _9f  of dz’ o

dm om 0z* dm
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Stackelberg Games with Multiple Followers aaaizo22
Multi-agent planning

: : Backprop o .
Gradient-based algorithm — Nash equilibrium quality
* * Multi- t
df (z*,m) _ % n of dz :'a:‘?'?:; ¥ decision

Il

Takeaway: differentiability of Nash equilibria and its
application to Stackelberg games




Outline

- Summary of Differentiable Optimization



Summary

Differentiable optimization is a powerful
primitive to embed non-trivial modeling
knowledge to use within larger systems

« Theory and engineering foundation

 Scalability in larger systems
« Extension to more optimization problems

48



Scalability Challenges and Solutions
to Differentiable Optimization

Kai Wang * Harvard University

Differentiable Surrogate: Automatically Learning Compact Surrogates [NeurlPS 2020]
Differentiable Block Sampling: Scalable Game-focused Learning [AAMAS 2020]
Differentiable RL: Learning MDPs from Features [NeurlPS 2021]

Differentiable Whittle Index: DFL in Restless Bandits [arXiv 2022]

Differentiable Equilibria: Coordinating Followers to Reach Better Equilibria [AAAIl 2022]

Joint work with Bryan Wilder, Sanket Shah, Lily Xu, Aditya Mate, Haipeng Chen, Andrew Perrault, Aparna
Taneja, Michael K Reiter, Finale Doshi-Velez, Milind Tambe

Kai Wang (kaiwang@g.harvard.edu)
Andrew Perrault (perrault.17@osu.edu)
Brandon Amos (bda@meta.com)

49


mailto:kaiwang@g.harvard.edu
mailto:perrault.17@osu.edu
mailto:bda@meta.com

