
Kai Wang
Harvard University

1

2022/07/25 @ IJCAI 2022

Scalability Challenges and Solutions to 
Differentiable Optimization



Prediction DecisionFeature

Decision-focused Learning (Recap)

2

Neural Network Optimization
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Maximize decision quality directly by 
integrating optimization as a differentiable layer

Backprop
Predictive accuracyTwo-stage learning

Public health Movie recommendationRoute planning Portfolio optimization
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Neural Network

Backprop
Decision quality

Optimization

Amos et al. ICML 2017

Maximize decision quality directly by 
integrating optimization as a differentiable layer

Research questions
• Scalability: how to make decision-focused learning more efficient?
• Extension: how to extend to other optimization problems?
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• Summary of Differentiable Optimization
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Decision-focused Learning
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Neural Network Optimization

Decision quality

AAMAS 2020

Convex/non-convex optimization



𝑓 𝑧, 𝜃 ≈ 𝑓 𝑧!, 𝜃 + 𝛻𝑓 ⋅ 𝛥𝑧 +
1
2
𝛥𝑧" ⋅ 𝛻#𝑓 ⋅ 𝛥𝑧

≔ 𝑔 𝑧, 𝜃
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Neural Network Optimization

Convex/non-convex optimization

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

Forward path: solving 
the planning problem

AAMAS 2020

𝑑𝑧∗

𝑑𝜃 = −
𝜕
𝜕𝑧 𝐾𝐾𝑇 𝑧∗, 𝜃

#$
𝜕
𝜕𝜃 𝐾𝐾𝑇 𝑧∗, 𝜃

Second-order derivative with size 𝑁×𝑁
Matrix inversion cost 𝑶 𝑵𝝎 , 𝜔 ≈ 2.373

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

max
"

𝑔(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

local

Non-convex Convex

Expensive!!

Backprop
Decision quality

Backward path: differentiating through 
the planning problem

Expensive!!
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Neural Network Optimization

Convex/non-convex optimization

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

Surrogate

Backprop
Decision quality

Forward path: solving 
the planning problem

Backward path: differentiating through 
the planning problem

NeurIPS 2020
spotlight

Decision-focused Learning
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Neural Network

Convex/non-convex optimization
Surrogate

Backprop
Decision quality

NeurIPS 2020
spotlight

Decision-focused Learning

Optimization

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ
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Prediction
𝜽

Decision
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Neural Network Optimization

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

max
𝒚

𝑔𝑷 𝒚, 𝜃 = 𝑓(𝑷𝒚, 𝜃)

𝑠. 𝑡. 𝐴𝑷𝒚 = 𝑏
G𝑷𝒚 ≤ ℎ

Surrogate 
parameter

𝑃
𝑧∗ = 𝑃𝑦∗

Surrogate problem

Surrogate Decision-focused Learning NeurIPS 2020
spotlight

𝑧 𝑦= 𝑃

Decision quality

Convex/non-convex optimization
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Decision quality
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𝒚

𝑔𝑷 𝒚, 𝜃 = 𝑓(𝑷𝒚, 𝜃)

𝑠. 𝑡. 𝐴𝑷𝒚 = 𝑏
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Surrogate 
parameter

𝑃
𝑧∗ = 𝑃𝑦∗

Surrogate problem

Backprop

Surrogate Decision-focused Learning NeurIPS 2020
spotlight

𝑧 𝑦= 𝑃

Convex/non-convex optimization

𝑑𝑦∗

𝑑𝜃
= −

𝜕
𝜕𝑦
𝐾𝐾𝑇 𝑦∗, 𝜃

"#
𝜕
𝜕𝜃
𝐾𝐾𝑇 𝑦∗, 𝜃

Second-order derivative with size 𝑀×𝑀 ≪ 𝑁×𝑁
Matrix inversion cost 𝑶 𝑴𝝎 , 𝜔 ≈ 2.373
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𝑧 𝑦= 𝑃

Convex/non-convex optimization

Benefits:
• Fast forward pass
• Fast backward pass

𝑑𝑦∗

𝑑𝜃
= −

𝜕
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𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏
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Decision quality
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𝒚
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parameter
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Surrogate problem

Backprop

Surrogate Decision-focused Learning NeurIPS 2020
spotlight

𝑧 𝑦= 𝑃

Convex/non-convex optimization

Benefits:
• Fast forward pass
• Fast backward pass
• Better generalization

𝑑𝑦∗

𝑑𝜃
= −

𝜕
𝜕𝑦
𝐾𝐾𝑇 𝑦∗, 𝜃

"#
𝜕
𝜕𝜃
𝐾𝐾𝑇 𝑦∗, 𝜃

Second-order derivative with size 𝑀×𝑀 ≪ 𝑁×𝑁
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𝑑𝑦∗

𝑑𝜃
= −

𝜕
𝜕𝑦
𝐾𝐾𝑇 𝑦∗, 𝜃

"#
𝜕
𝜕𝜃
𝐾𝐾𝑇 𝑦∗, 𝜃

Second-order derivative with size 𝑀×𝑀 ≪ 𝑁×𝑁
Matrix inversion cost 𝑶 𝑴𝝎 , 𝜔 ≈ 2.373

𝑦 ∈ ℝ(
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Neural Network Optimization

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ
Decision quality

max
𝒚

𝑔𝑷 𝒚, 𝜃 = 𝑓(𝑷𝒚, 𝜃)

𝑠. 𝑡. 𝐴𝑷𝒚 = 𝑏
G𝑷𝒚 ≤ ℎ

Surrogate 
parameter

𝑃
𝑥∗ = 𝑃𝑦∗

Surrogate problem

Backprop

Surrogate Decision-focused Learning NeurIPS 2020
spotlight

𝑥 𝑦= 𝑃

Convex/non-convex optimization

Takeaway:
• Improve scalability by surrogate and dimension reduction
• Jointly learn the surrogate and the model
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max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎBackprop
Decision quality

Forward path: solving 
the planning problem

Backward path: differentiating through 
the planning problem

Decision-focused Learning
Convex/non-convex optimization

𝑑𝑧∗

𝑑𝜃 = −
𝜕
𝜕𝑧 𝐾𝐾𝑇 𝑧∗, 𝜃

#$
𝜕
𝜕𝜃 𝐾𝐾𝑇 𝑧∗, 𝜃

Second-order derivative involved with size 𝑁)

Matrix inversion cost 𝑂 𝑁* , 𝜔 ≈ 2.373
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Neural Network Planning
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AAMAS 2020
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Block Decision-focused Learning

Main idea: only backprop through a subset of decision variables

Backprop
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AAMAS 2020

Forward path: solving 
the planning problem

Backward path: differentiating through 
the planning problem

Convex/non-convex optimization

𝑑𝑧∗

𝑑𝜃 = −
𝜕
𝜕𝑧 𝐾𝐾𝑇 𝑧∗, 𝜃

#$
𝜕
𝜕𝜃 𝐾𝐾𝑇 𝑧∗, 𝜃

Second-order derivative involved with size 𝑁)

Matrix inversion cost 𝑂 𝑁* , 𝜔 ≈ 2.373



Prediction
𝜽

Decision
𝒛∗Feature

19

Neural Network Planning

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ

Block Decision-focused Learning

Main idea: only backprop through a subset of decision variables

Backprop
Decision quality

AAMAS 2020

Forward path: solving 
the planning problem

Backward path: differentiating through 
the planning problem

Convex/non-convex optimization



Backward path: differentiating through 
part of the planning problem
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Neural Network Planning

Block Decision-focused Learning

Backprop
Decision quality

AAMAS 2020

Forward path: solving 
the planning problem

max
"!

𝑓(𝒛𝑪, 𝑧#,∗ , 𝜃)

𝑠. 𝑡. 𝐴-𝒛𝑪 = 𝑏-
𝐺-𝒛𝑪 ≤ ℎ-

Convex/non-convex optimization

𝑑𝒛𝑪∗

𝑑𝜃 = −
𝜕
𝜕𝒛𝑪

𝐾𝐾𝑇𝑪 𝑧∗, 𝜃
#$

𝜕
𝜕𝜃 𝐾𝐾𝑇𝑪 𝑧

∗, 𝜃
Algorithm:
1. Solve 𝒛 (forward)
2. Randomly sample a subset 𝐶
3. Compute N𝒛𝑪

∗

NO
to backprop (backward)

max
"

𝑓(𝑧, 𝜃)
𝑠. 𝑡. 𝐴𝑧 = 𝑏

Gz ≤ ℎ



Backward path: differentiating through 
part of the planning problem
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Neural Network Planning

Block Decision-focused Learning

Backprop
Decision quality

AAMAS 2020

Forward path: solving 
the planning problem

max
"!

𝑓(𝒛𝑪, 𝑧#,∗ , 𝜃)

𝑠. 𝑡. 𝐴-𝒛𝑪 = 𝑏-
𝐺-𝒛𝑪 ≤ ℎ-

Convex/non-convex optimization

Second-order derivative involved with size 𝑪 𝟐

Matrix inversion cost 𝑶 𝑪 𝝎 , 𝜔 ≈ 2.373

𝑑𝒛𝑪∗

𝑑𝜃 = −
𝜕
𝜕𝒛𝑪

𝐾𝐾𝑇𝑪 𝑧∗, 𝜃
#$

𝜕
𝜕𝜃 𝐾𝐾𝑇𝑪 𝑧

∗, 𝜃
Algorithm:
1. Solve 𝒛 (forward)
2. Randomly sample a subset 𝐶
3. Compute N𝒛𝑪

∗

NO
to backprop (backward)



Backward path: differentiating through 
part of the planning problem
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Neural Network Planning

Block Decision-focused Learning

Backprop
Decision quality

AAMAS 2020

Forward path: solving 
the planning problem

max
"!

𝑓(𝒛𝑪, 𝑧#,∗ , 𝜃)

𝑠. 𝑡. 𝐴-𝒛𝑪 = 𝑏-
𝐺-𝒛𝑪 ≤ ℎ-

Convex/non-convex optimization

Observations:
• More than quadratic speedup
• Linearly less information
• Approximate stochastic gradient

𝑑𝒛𝑪∗

𝑑𝜃 = −
𝜕
𝜕𝒛𝑪

𝐾𝐾𝑇𝑪 𝑧∗, 𝜃
#$

𝜕
𝜕𝜃 𝐾𝐾𝑇𝑪 𝑧

∗, 𝜃

Second-order derivative involved with size 𝑪 𝟐

Matrix inversion cost 𝑶 𝑪 𝝎 , 𝜔 ≈ 2.373
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Neural Network Planning

max
"!

𝑓(𝒛𝑪, 𝑧#,∗ , 𝜃)

𝑠. 𝑡. 𝐴-𝒛𝑪 = 𝑏-
𝐺-𝒛𝑪 ≤ ℎ-

Block Decision-focused Learning

Backprop
Decision quality

AAMAS 2020

Backward path: differentiating through 
part of the planning problem

Forward path: solving 
the planning problem

Takeaway:
• Improve scalability by block sampling
• Approximate stochastic gradient descent

Convex/non-convex optimization



Experimental Results

24

0

0.2

0.4

0.6

0.8

20 40 60 80 100

R
eg

re
t

# nodes 

TS DF block surrogate

Smuggling intervention

0

5

10

15

20 40 60 80 100

R
eg

re
t

# candidates 

TS DF surrogate

Movie recommendation

0

0.02

0.04

0.06

0.08

50 100 150 200 250

R
eg

re
t

# securities 

TS DF surrogate

Portfolio optimization

Two-stage
scalability -
performance Poor

DF
Poor
Good

Block
Better
Good (guarantee)

Surrogate
Best
Best

AAMAS 2020
NeurIPS 2020

spotlightConvex/non-convex optimization
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Decision-focused Learning (Recap)
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Sequential planning

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Sequential 
Planning

Backprop

𝒅𝝅∗

𝒅𝜽
= ∇"# 𝐽$ 𝜋∗

%&
∇$"# 𝐽$ 𝜋∗

• Policy optimality or Bellman optimality 
• Policy gradient theorem

Expensive computation!!

Forward path: solving 
the sequential problem

Backward path: differentiating through 
the planning problem



Public Health Challenges
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Sequential planning

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Sequential 
Planning

Backprop

Forward path: solving 
the sequential problem

Backward path: differentiating through 
the planning problem

Schedule service calls to 
provide health information 
to pregnant women

Schedules service calls to 
improve adherence of 
tuberculosis patients



Schedule service calls to 
provide health information 
to pregnant women

Schedules service calls to 
improve adherence of 
tuberculosis patients

Forward path: solving 
the sequential problem

Backward path: differentiating through 
the planning problem
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Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Sequential 
Planning

Backprop

Public Health Challenges
Sequential planning

Can decision-focused learning be applied to large-scale
sequential problems?



Forward path: solving 
the sequential problem

Backward path: differentiating through 
the planning problem

ARMMAN uses automated 
messages and service calls to 
provide health information 
to mothers in India

99dots schedules service 
calls to improve adherence 
of tuberculosis patients
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Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Sequential 
Planning

Backprop

Can decision-focused learning be applied to large-scale
sequential problems?

Public Health Challenges
Sequential planning

Key idea: leverage property of the sequential problems



Maternal and Child Health

30

Sequential planning

Backprop

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Sequential 
Planning

Predictive problem:
• Participants’ transition probabilities
Sequential planning (RMAB): 
• Schedule service calls based on observed states



Maternal and Child Health
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Sequential planning

Backprop

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Restless multi-
armed bandits

Predictive problem:
• Participants’ transition probabilities
Sequential planning (RMAB): 
• Schedule service calls based on observed states



Sequential Problem: Restless Bandits

• An extension of multi-armed bandits

• Restless state: arms are associated 
with states and transition functions
• Action: select K out of N arms to pull
• Goal: maximize total reward in T steps

32

𝑠R 𝑠S 𝑠T ∈ 𝑆…

𝑎R 𝑎S 𝑎T ∈ 𝐴 = 0,1…

𝑃R 𝑃S 𝑃T ∈ S×𝐴×𝑆 → ℝ…

𝑠RU 𝑠SU 𝑠TU ∈ 𝑆…

PSPACE-hard to find the optimal solution!



Sequential Problem: Restless Bandits

• An extension of multi-armed bandits

• Restless state: arms are associated 
with states and transition functions

• Whittle index: the value of pulling

33

𝑊V 𝑠V ≔ smallest subsidy 𝑚 provided to not pulling (𝑎 = 0)
s.t. 𝑄V 𝑠V, 𝑎 = 0 = 𝑄V 𝑠V, 𝑎 = 1

𝑊R 𝑠R 𝑊S(𝑠S) 𝑊T 𝑠T…

𝑠R 𝑠S 𝑠T ∈ 𝑆…

Pull the largest K



Maternal and Child Health
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Sequential planning

Backprop

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Restless multi-
armed bandits

Predictive problem:
• Participants’ transition probabilities
Sequential planning (RMAB): 
• Schedule service calls based on observed states



Maternal and Child Health
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Sequential planning

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

𝜋/012234
Whittle index planning

Whittle 
index

Top k
selection

Whittle index policy 

𝑊

Restless multi-
armed bandits



Backprop

Whittle Index Differentiability
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Sequential planning

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Main idea
• Differentiate through Whittle index policy

𝜋/012234
Whittle index planning

Whittle 
index

Top k
selection

Whittle index policy 

𝑊

Restless multi-
armed bandits

Whittle index
Top-k selection



Backprop

Whittle Index Differentiability
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Sequential planning

Prediction
𝜽

Sequential
Policy
𝝅∗

Feature
Neural Network

Restless multi-
armed bandits

Whittle index
𝑊1 𝑠1 ≔ smallest m
s.t. subsidy 𝑚 provided to not pulling

𝑄1 𝑠1 , 𝑎 = 0 = 𝑄1 𝑠1 , 𝑎 = 1
Bellman equation parameterized by 𝜃

Top-k selection Amos et al. (arXiv 2019), Xie et al. (NeurIPS 2020)

𝜋/012234
Whittle index planning

Whittle 
index

Top k
selection

Whittle index policy 

𝑊



Whittle Index Differentiability
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Sequential planning

Feature
Neural Network

Restless multi-
armed bandits

Whittle index
𝑊1 𝑠1 ≔ smallest m
s.t. subsidy 𝑚 provided to not pulling

𝑄1 𝑠1 , 𝑎 = 0 = 𝑄1 𝑠1 , 𝑎 = 1
Bellman equation parameterized by 𝜃

We can select equalities in the above constraints to express 𝑊1 𝑠1 as a solution to a linear system.

Top-k selection Amos et al. (arXiv 2019), Xie et al. (NeurIPS 2020)

Takeaway: leverage approximate solution to bypass the 
cost of differentiating through sequential problems

Backprop

𝜋/012234
Whittle index planning

Whittle 
index

Top k
selection

Whittle index policy 

𝑊

Prediction
𝜽

Sequential
Policy
𝝅∗



Maternal and Child Health
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Sequential planning

Scale up decision-focused learning to large sequential problem

-700
-600
-500
-400
-300
-200
-100

0

random two-stage decision-focused

Log-likelihood (accuracy)

300
310
320
330
340
350
360

random two-stage decision-focused

Engagement Performance



Collaboration
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AI in healthcare



Outline
• Decision-focused Learning (Recap)
• Scalability and Applications in Different Optimization 

Problems
• Convex/non-convex optimization
• Sequential optimization
• Multi-agent optimization

• Summary of Differentiable Optimization
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Leader
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𝒏 followers

• Choose a strategy 𝜋 ∈ Π first

• Followers select strategies simultaneously to 
form an equilibrium 𝑧∗ = [𝑧", 𝑧#, … , 𝑧$]

• Receive a payoff 𝑓 𝑧∗, 𝜋 and a 
constraint cost 𝑔 𝑧∗, 𝜋

• Follower i receives 𝑓% 𝑧∗, 𝜋

Applications

Wildlife conservation Cybersecurity

Public health Public safety

Stackelberg Games with Multiple Followers
Multi-agent planning

AAAI 2022
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Machine Learning

Multi-agent planning

Multi-agent
PlanningPolicy

𝝅

Joint 
decision

𝒛∗
Feature

Backprop
Nash equilibrium quality

Leader 𝒏 followers

AAAI 2022
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Machine Learning

Multi-agent planning

Multi-agent
PlanningPolicy

𝝅

Joint 
decision

𝒛∗
Feature

Backprop
Nash equilibrium quality

Leader 𝒏 followers

Main idea
• Differentiability of Nash equilibrium and multi-agent planning
• Concatenate all the KKT conditions: 𝐾𝐾𝑇𝑠 = 𝐾𝐾𝑇R, 𝐾𝐾𝑇S, … , 𝐾𝐾𝑇_

Algorithm
• Run gradient descent to optimize Nash equilibrium quality

AAAI 2022
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Multi-agent planning

Bilevel optimization

Gradient-based algorithm

max
&∈(

𝑓 𝑧∗, 𝜋
𝑔 𝑧∗, 𝜋 ≤ 0𝑠. 𝑡. 𝑧∗ = 𝒪 𝜋 ,

where 𝒪:Π → 𝑍∗ is an oracle that returns 
a Nash equilibrium

𝑑𝑓 𝑧∗, 𝜋
𝑑𝜋

𝑑𝑧∗

𝑑𝜋
=
𝜕𝑓
𝜕𝜋 +

𝜕𝑓
𝜕𝑧∗

𝜕𝑓
𝜕𝜋

𝜕𝑓
𝜕𝑧∗

𝒅𝒛∗

𝒅𝝅
• Challenge: gradient computation

Joint 
decision

𝒛∗

Multi-agent
PlanningPolicy

𝝅

Backprop
Nash equilibrium quality

AAAI 2022

𝑓 𝑧∗, 𝜋
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Multi-agent planning
Gradient-based algorithm

𝑑𝑧∗

𝑑𝜋
=
𝜕𝑓
𝜕𝜋 +

𝜕𝑓
𝜕𝑧∗

Main idea
• The KKT conditions of all followers must simultaneously hold
• Concatenate all the KKT conditions: 𝐾𝐾𝑇𝑠 = 𝐾𝐾𝑇", 𝐾𝐾𝑇#, … , 𝐾𝐾𝑇$

𝒅𝒛∗

𝒅𝝅

𝐾𝐾𝑇𝑠 𝑧∗, 𝜋 = 0

𝑑𝑓 𝑧∗, 𝜋
𝑑𝜋

Joint 
decision

𝒛∗

Multi-agent
PlanningPolicy

𝝅

Backprop
Nash equilibrium quality

AAAI 2022

⇒
𝜕𝐾𝐾𝑇𝑠
𝜕𝜋 +

𝜕𝐾𝐾𝑇𝑠
𝜕𝑧

𝑑𝑧∗

𝑑𝜋 = 0 ⇒
𝑑𝑧∗

𝑑𝜋 =
𝜕𝐾𝐾𝑇𝑠
𝜕𝑧

#$ 𝜕𝐾𝐾𝑇𝑠
𝜕𝜋

Takeaway: differentiability of Nash equilibria and its 
application to Stackelberg games



Outline
• Decision-focused Learning (Recap)
• Scalability and Applications in Different Optimization 

Problems
• Convex/non-convex optimization
• Sequential optimization
• Multi-agent optimization

• Summary of Differentiable Optimization
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Differentiable optimization is a powerful 
primitive to embed non-trivial modeling 
knowledge to use within larger systems
• Theory and engineering foundation
• Scalability in larger systems
• Extension to more optimization problems

48

Summary



Scalability Challenges and Solutions 
to Differentiable Optimization
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Kai Wang • Harvard University

Differentiable Surrogate: Automatically Learning Compact Surrogates [NeurIPS 2020]
Differentiable Block Sampling: Scalable Game-focused Learning [AAMAS 2020]
Differentiable RL: Learning MDPs from Features [NeurIPS 2021]
Differentiable Whittle Index: DFL in Restless Bandits [arXiv 2022]
Differentiable Equilibria: Coordinating Followers to Reach Better Equilibria [AAAI 2022]

Joint work with Bryan Wilder, Sanket Shah, Lily Xu, Aditya Mate, Haipeng Chen, Andrew Perrault, Aparna 
Taneja, Michael K Reiter, Finale Doshi-Velez, Milind Tambe
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