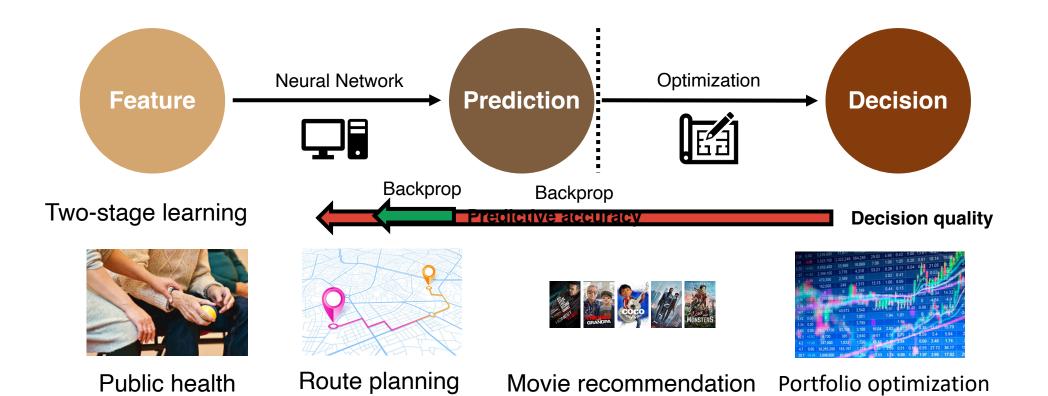
Scalability Challenges and Solutions to Differentiable Optimization

2022/07/25 @ IJCAI 2022

Kai Wang Harvard University

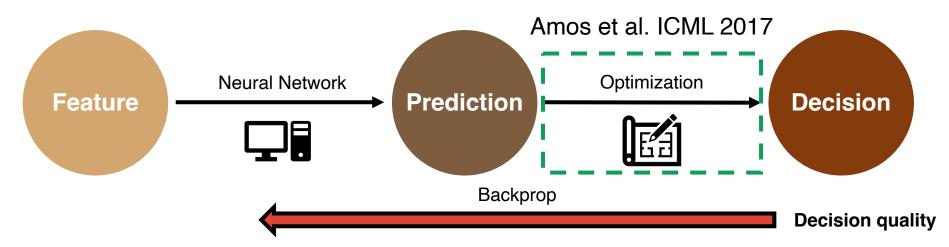
Decision-focused Learning (Recap)

Maximize decision quality directly by integrating optimization as a differentiable layer



Decision-focused Learning (Recap)

Maximize decision quality directly by integrating optimization as a differentiable layer



Research questions

- Scalability: how to make decision-focused learning more efficient?
- **Extension**: how to extend to other optimization problems?

Outline

- Decision-focused Learning (Recap)
- Scalability and Applications in Different Optimization Problems
 - Convex/non-convex optimization
 - Sequential optimization
 - Multi-agent optimization

Summary of Differentiable Optimization

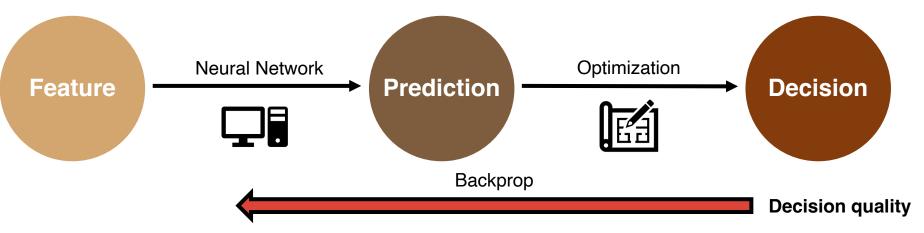
Outline

- Decision-focused Learning (Recap)
- Scalability and Applications in Different Optimization Problems
 - Convex/non-convex optimization
 - Sequential optimization
 - Multi-agent optimization
- Summary of Differentiable Optimization

Decision-focused Learning

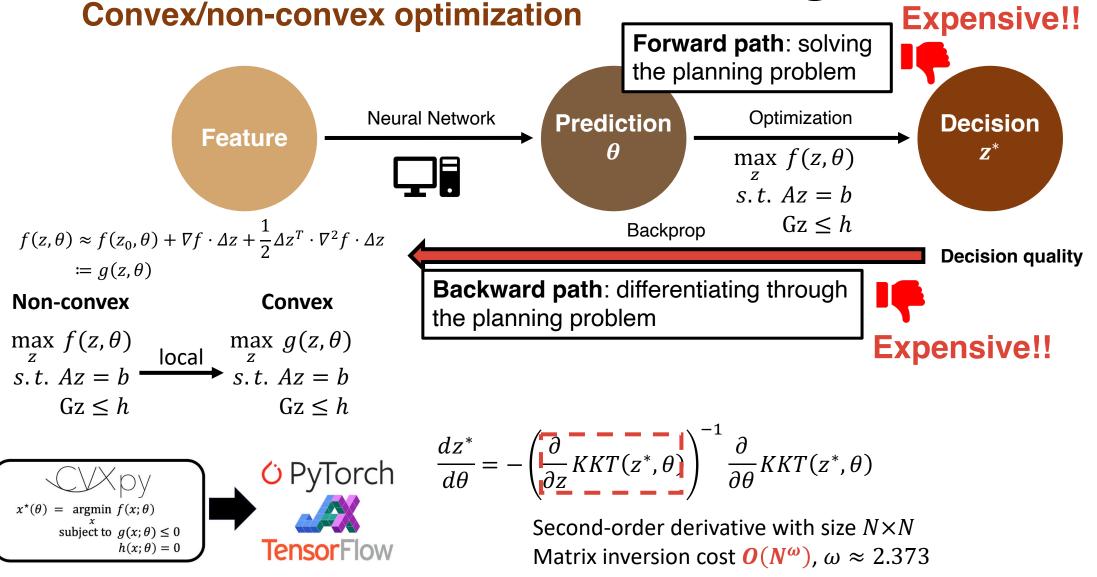
AAMAS 2020

Convex/non-convex optimization



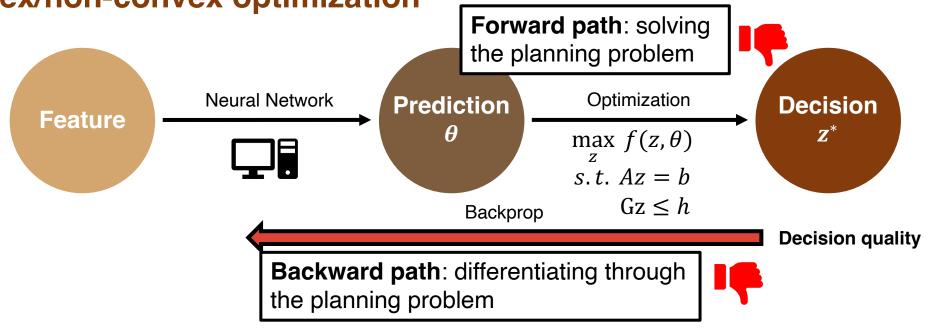
Decision-focused Learning

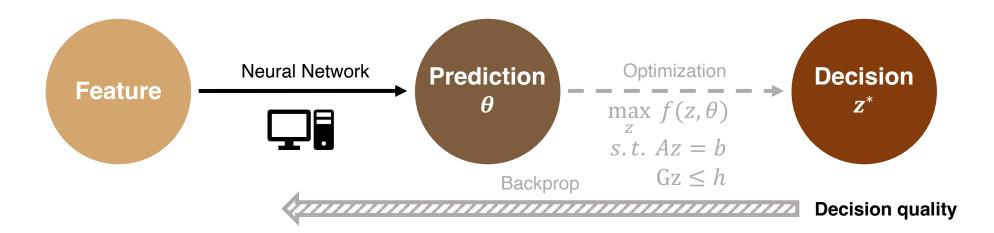
AAMAS 2020

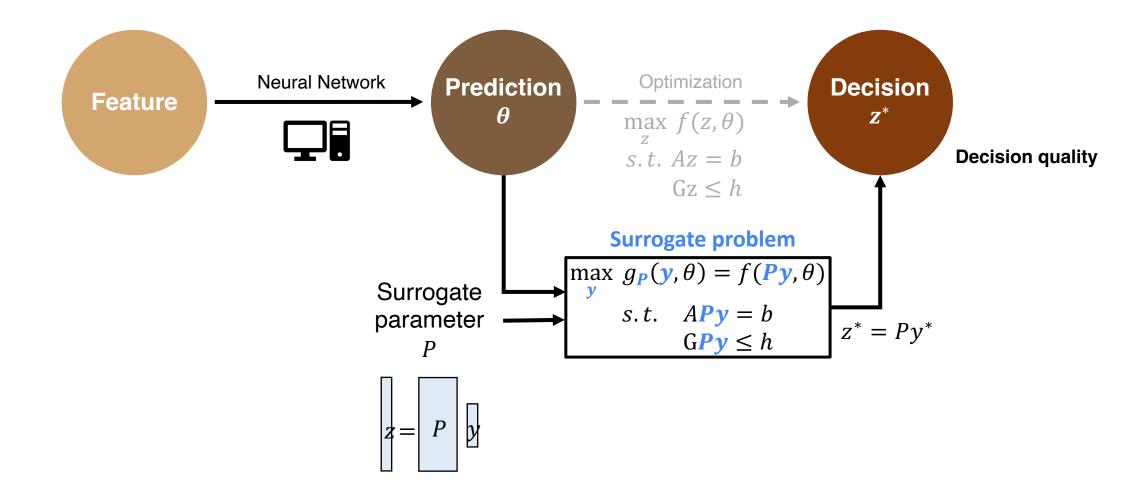


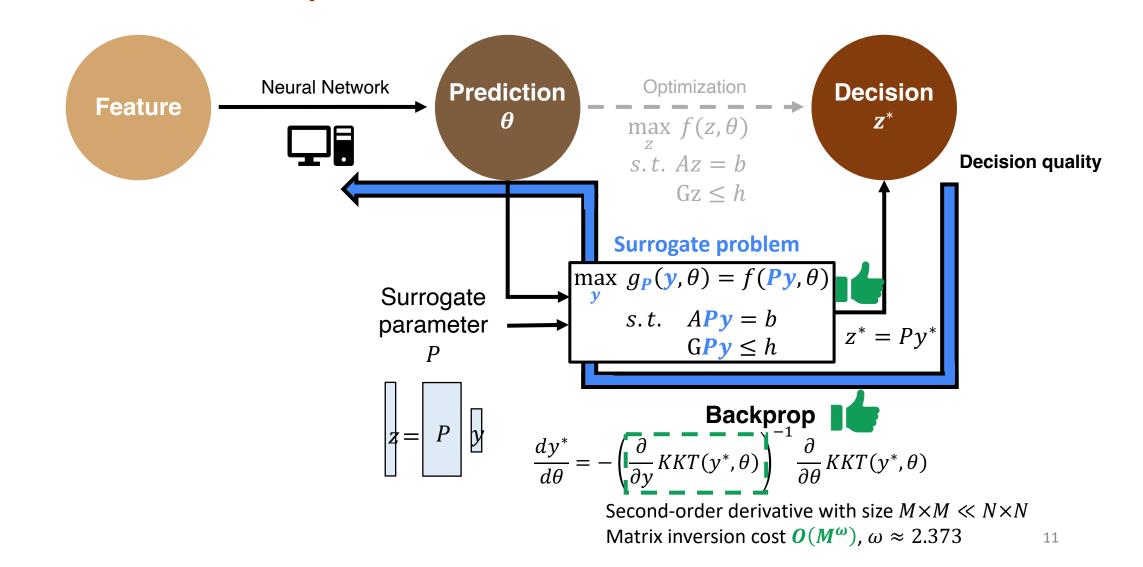
7

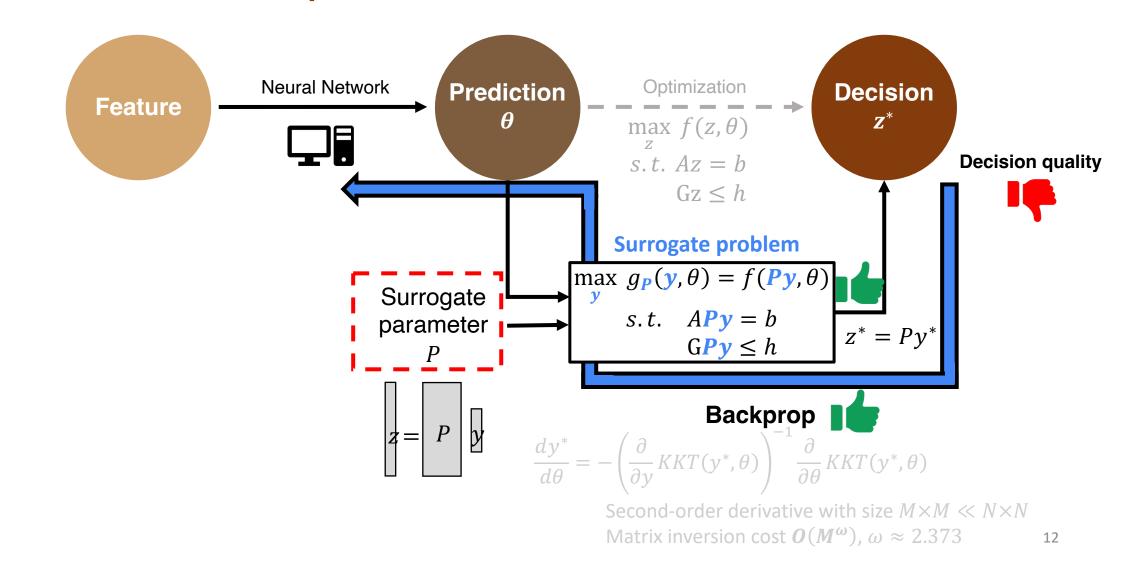
Surrogate Decision-focused Learning NeurIPS 2020 Spotlight

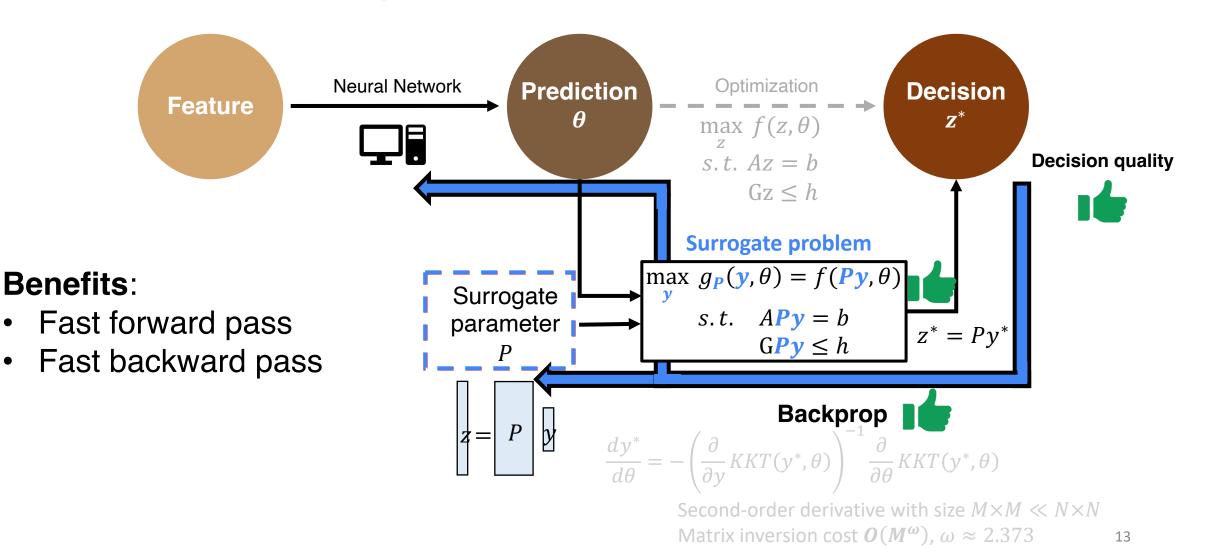




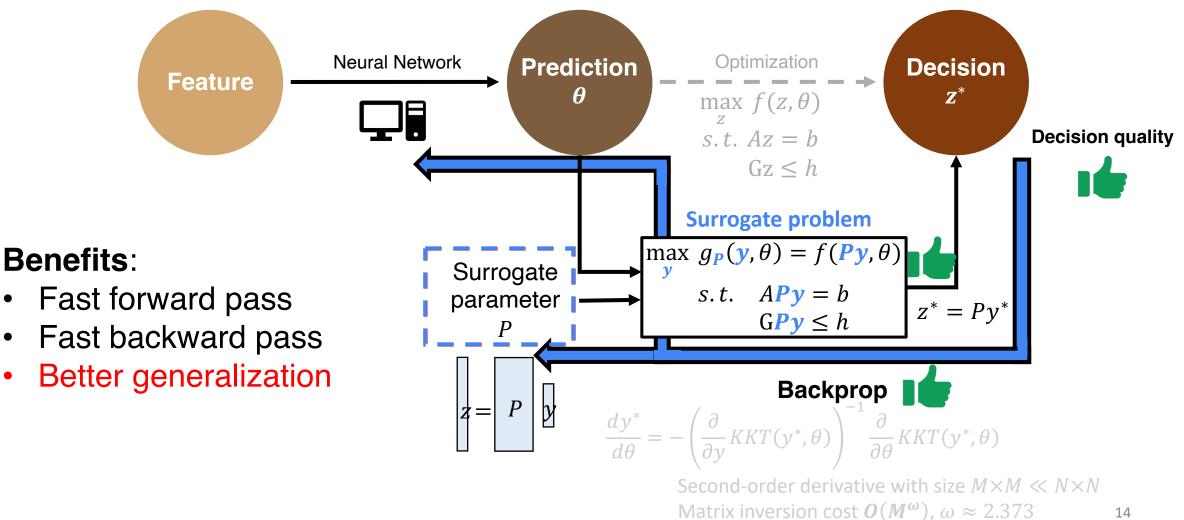






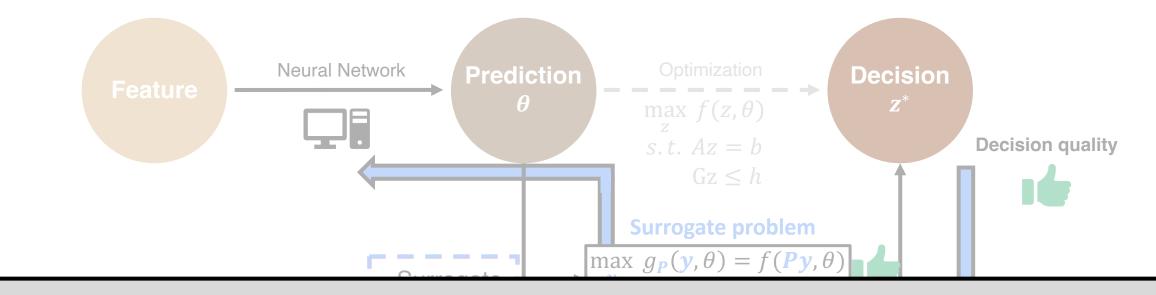


NeurIPS 2020 spotlight



14

NeurIPS 2020 spotlight

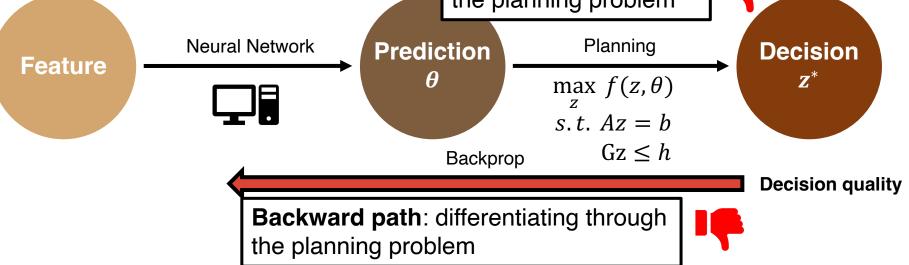


Takeaway:

- Improve scalability by surrogate and dimension reduction
- Jointly learn the surrogate and the model

Decision-focused Learning

Convex/non-convex optimization Forward path: solving the planning problem



$$\frac{dz^*}{d\theta} = -\left(\frac{\partial}{\partial z}KKT(z^*,\theta)\right)^{-1}\frac{\partial}{\partial \theta}KKT(z^*,\theta)$$

Second-order derivative involved with size N^2 Matrix inversion cost $O(N^{\omega})$, $\omega \approx 2.373$

Block Decision-focused Learning

Convex/non-convex optimization Forward path: solving the planning problem Neural Network Planning Prediction Decision Feature $\max_{z} f(z,\theta)$ θ Z^* s.t. Az = b $Gz \leq h$ Backprop **Decision quality Backward path**: differentiating through the planning problem

$$\frac{dz^*}{d\theta} = -\left(\frac{\partial}{\partial z}KKT(z^*,\theta)\right)^{-1}\frac{\partial}{\partial \theta}KKT(z^*,\theta)$$

Second-order derivative involved with size N^2 Matrix inversion cost $O(N^{\omega})$, $\omega \approx 2.373$

AAMAS 2020

Block Decision-focused Learning

Convex/non-convex optimization Forward path: solving the planning problem Planning **Neural Network** Prediction Decision Feature $\max_{z} f(z,\theta)$ θ Z^* s.t. Az = b $Gz \leq h$ Backprop **Decision quality Backward path**: differentiating through the planning problem

Main idea: only backprop through a subset of decision variables

$$\frac{dz^*}{d\theta} = -\left(\frac{\partial}{\partial z}KKT(z^*,\theta)\right)^{-1}\frac{\partial}{\partial \theta}KKT(z^*,\theta)$$

Second-order derivative involved with size N^2 Matrix inversion cost $O(N^{\omega})$, $\omega \approx 2.373$

AAMAS 2020

Biock Decision-focused Learning convex/non-convex optimization Forward path: solving the planning problem Neural Network Feature Neural Network $Planning max f(z, \theta)$ $planning max f(z, \theta)$

Backprop

Backward path: differentiating through

s.t. Az = b

 $Gz \leq h$

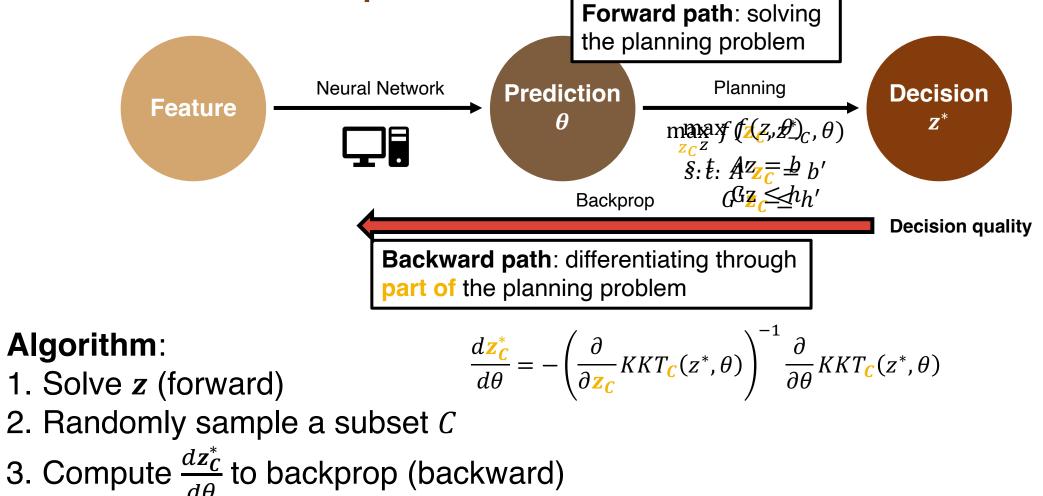
Decision quality

Main idea: only backprop through a subset of decision variables

the planning problem

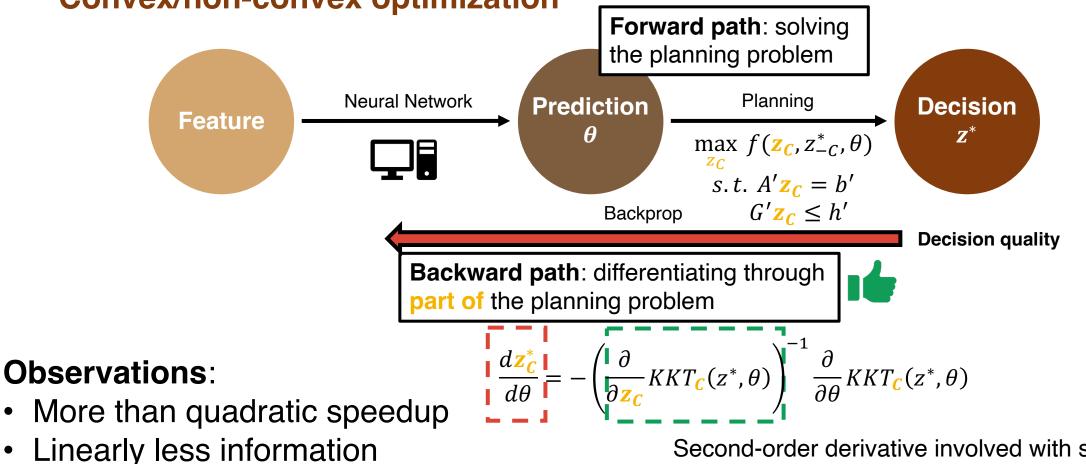
Block Decision-focused Learning AAMAS 2020

Convex/non-convex optimization



Block Decision-focused Learning AAMAS 2020 Convex/non-convex optimization Forward path: solving the planning problem **Neural Network** Planning Prediction Decision Feature θ $\max_{z_{C}} f(z_{C}, z_{-C}^{*}, \theta)$ Z^* s.t. $A'\mathbf{z}_{c} = b'$ $G'\mathbf{z}_{C} \leq h'$ Backprop **Decision quality** Backward path: differentiating through part of the planning problem $\frac{d\mathbf{z}_{\boldsymbol{c}}^{*}}{d\theta} = -\left(\frac{\partial}{\partial \mathbf{z}_{\boldsymbol{c}}}KKT_{\boldsymbol{c}}(z^{*},\theta)\right)^{-1}\frac{\partial}{\partial\theta}KKT_{\boldsymbol{c}}(z^{*},\theta)$ Algorithm: 1. Solve *z* (forward) 2. Randomly sample a subset C Second-order derivative involved with size $|C|^2$ 3. Compute $\frac{dz_{C}^{*}}{d\theta}$ to backprop (backward) Matrix inversion cost $O(|C|^{\omega}), \omega \approx 2.373$

Block Decision-focused Learning AAMAS 2020 Convex/non-convex optimization

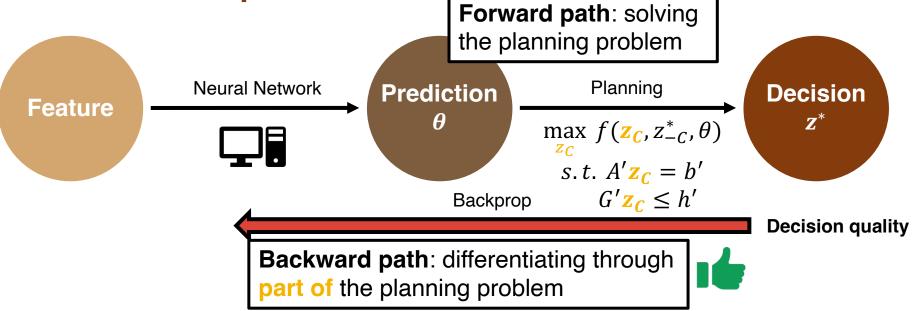


Approximate stochastic gradient

Second-order derivative involved with size $|C|^2$ Matrix inversion cost $O(|C|^{\omega})$, $\omega \approx 2.373$

Block Decision-focused Learning

Convex/non-convex optimization



AAMAS 2020

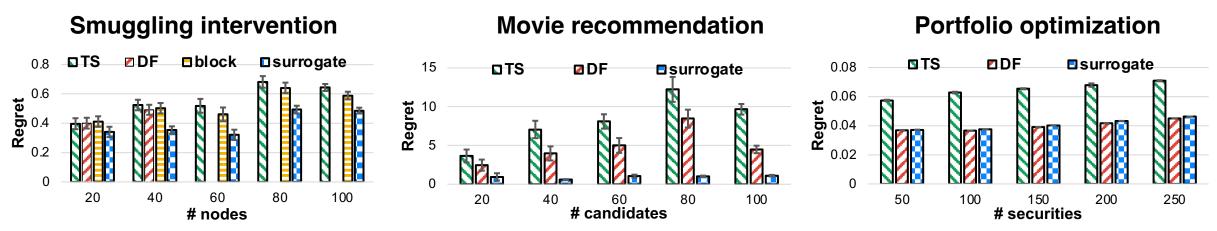
Takeaway:

- Improve scalability by block sampling
- Approximate stochastic gradient descent

Experimental Results Convex/non-convex optimization

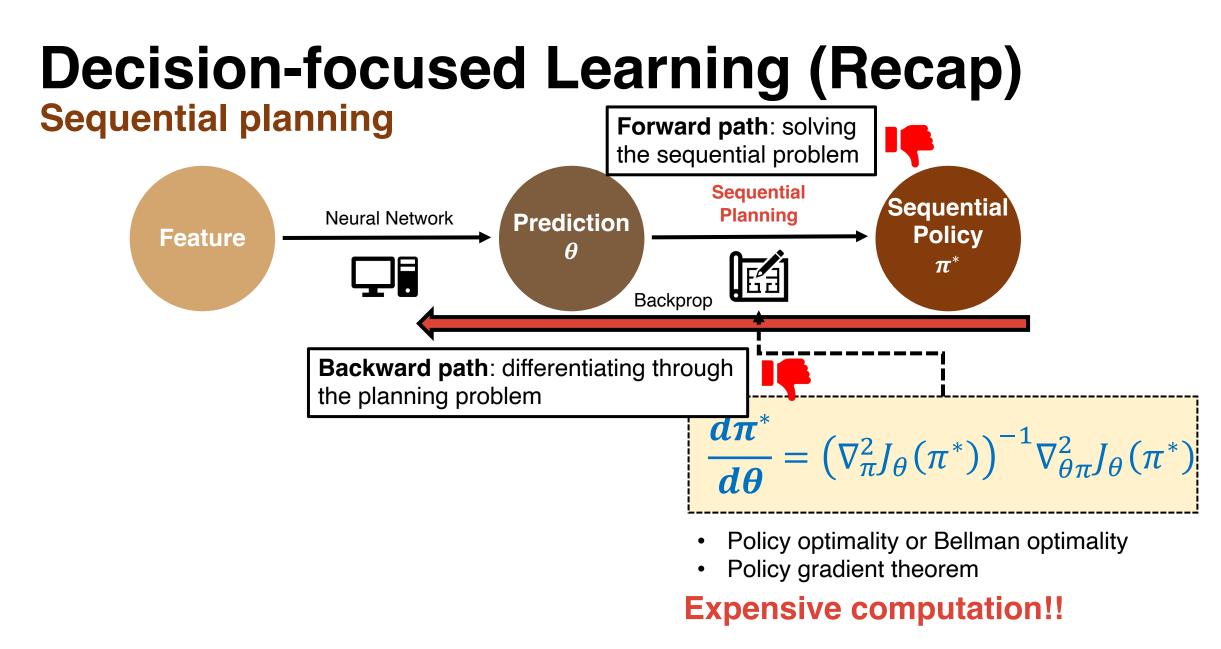
AAMAS 2020 NeurIPS 2020 spotlight

	Two-stage	DF	Block	Surrogate
scalability	-	Poor	Better	Best
performance	Poor	Good	Good (guarantee)	Best



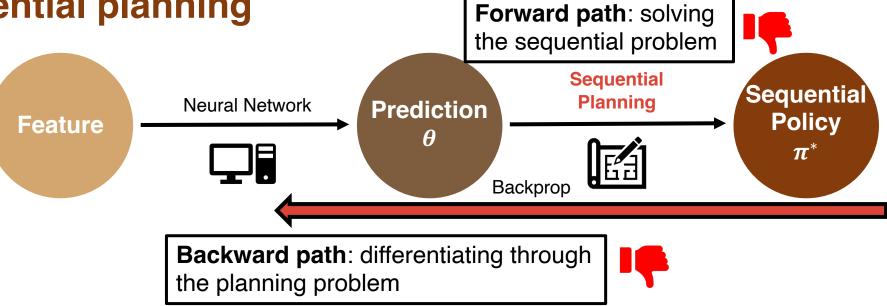
Outline

- Decision-focused Learning (Recap)
- Scalability and Applications in Different Optimization Problems
 - Convex/non-convex optimization
 - Sequential optimization
 - Multi-agent optimization
- Summary of Differentiation Techniques



Public Health Challenges

Sequential planning

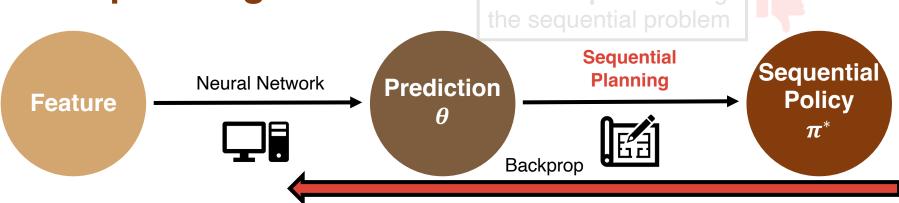


Schedule service calls to provide health information to pregnant women

Schedules service calls to improve adherence of tuberculosis patients

Public Health Challenges

Sequential planning



Backward path: differentiating through

Can decision-focused learning be applied to large-scale sequential problems?

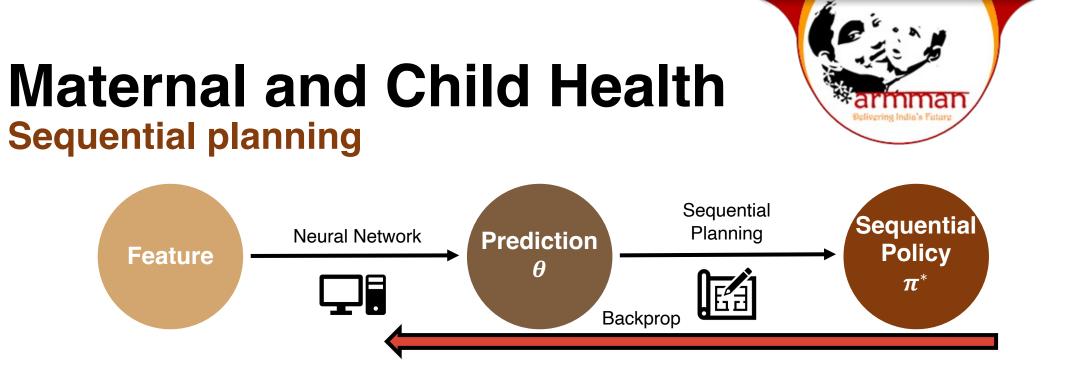
Public Health Challenges

Sequential planning Feature Neural Network Feature Neural Network Backprop

Backward path: differentiating through

Can decision-focused learning be applied to large-scale sequential problems?

Key idea: leverage property of the sequential problems

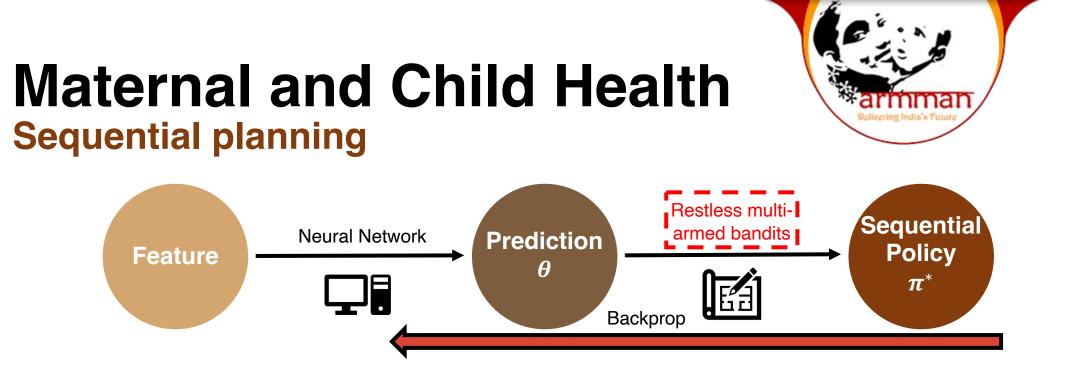


Predictive problem:

Participants' transition probabilities

Sequential planning (RMAB):

Schedule service calls based on observed states



Predictive problem:

Participants' transition probabilities

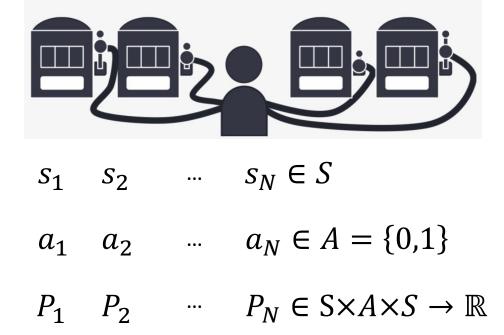
Sequential planning (RMAB):

Schedule service calls based on observed states

Sequential Problem: Restless Bandits

- An extension of multi-armed bandits
- **Restless state**: arms are associated with states and transition functions
- Action: select K out of N arms to pull
- Goal: maximize total reward in T steps

PSPACE-hard to find the optimal solution!



 $s_1' \quad s_2' \quad \cdots \quad s_N' \in S$

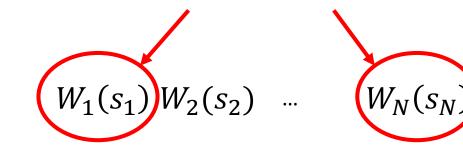
Sequential Problem: Restless Bandits

- An extension of multi-armed bandits
- **Restless state**: arms are associated with states and transition functions

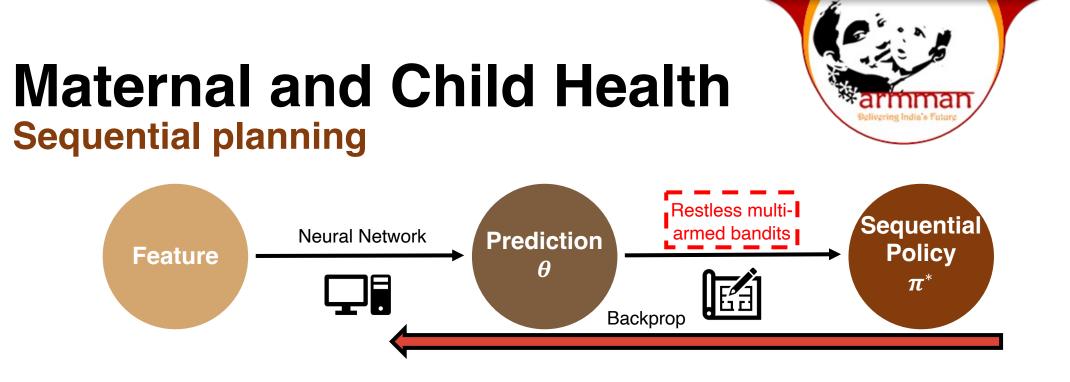
• Whittle index: the value of pulling

 $s_1 \quad s_2 \quad \dots \quad s_N \in S$

Pull the largest K



 $W_i(s_i) \coloneqq$ smallest subsidy m provided to not pulling (a = 0)s.t. $Q_i(s_i, a = 0) = Q_i(s_i, a = 1)$

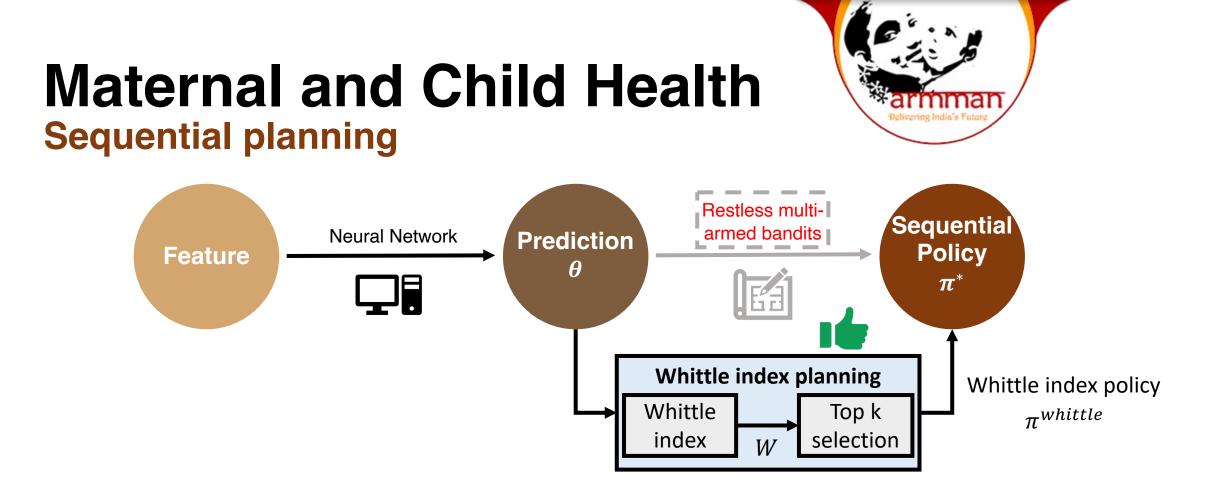


Predictive problem:

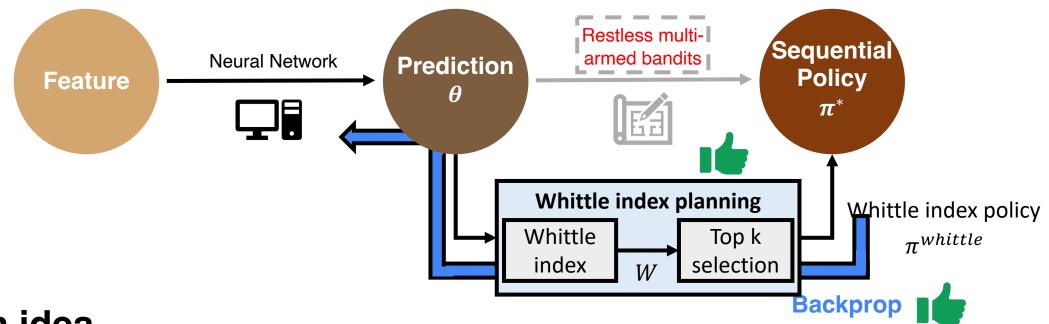
Participants' transition probabilities

Sequential planning (RMAB):

Schedule service calls based on observed states



Whittle Index Differentiability Sequential planning



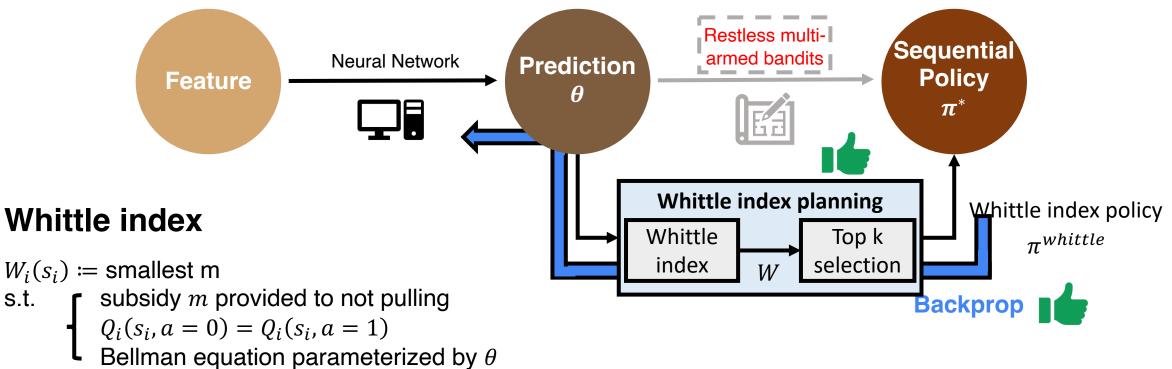
Main idea

Differentiate through Whittle index policy

Whittle index

Top-k selection

Whittle Index Differentiability Sequential planning

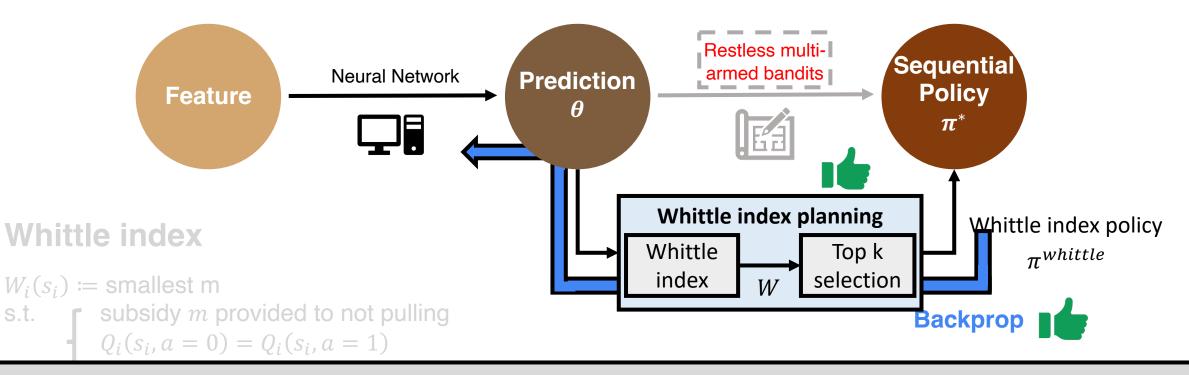


s.t.

Top-k selection Amos et al. (arXiv 2019), Xie et al. (NeurIPS 2020)

Whittle Index Differentiability Sequential planning

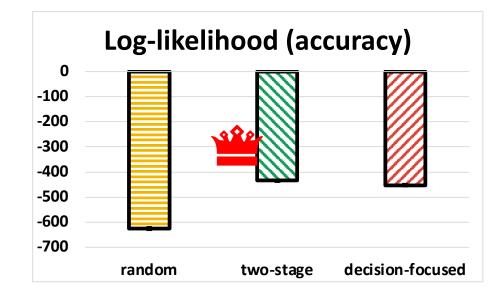
s.t.

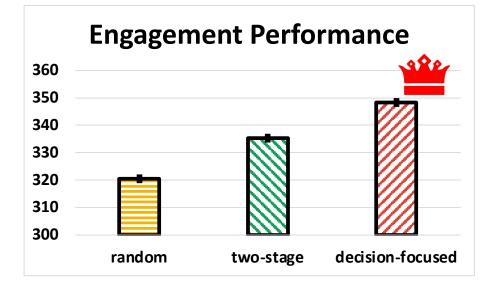


Takeaway: leverage approximate solution to bypass the cost of differentiating through sequential problems

Maternal and Child Health Sequential planning

Scale up decision-focused learning to large sequential problem





Collaboration

Al in healthcare

Outline

- Decision-focused Learning (Recap)
- Scalability and Applications in Different Optimization Problems
 - Convex/non-convex optimization
 - Sequential optimization
 - Multi-agent optimization
- Summary of Differentiable Optimization

Leader

n followers

- Choose a strategy $\pi \in \Pi$ first •
- Receive a payoff $f(z^*, \pi)$ and a constraint cost $g(z^*, \pi)$

Follower i receives $f_i(z^*, \pi)$

Followers select strategies simultaneously to

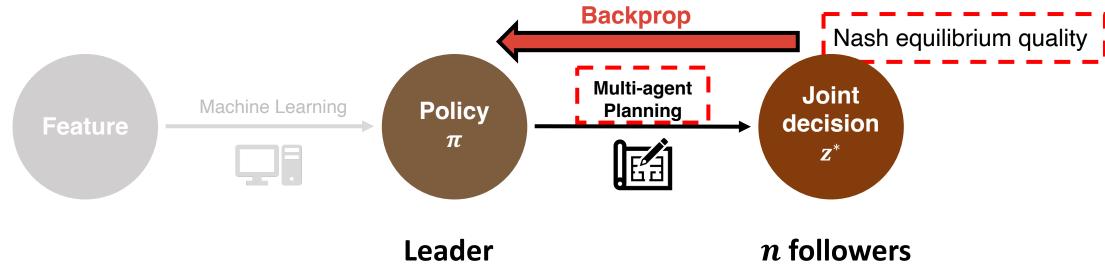
form an equilibrium $z^* = [z_1, z_2, ..., z_n]$

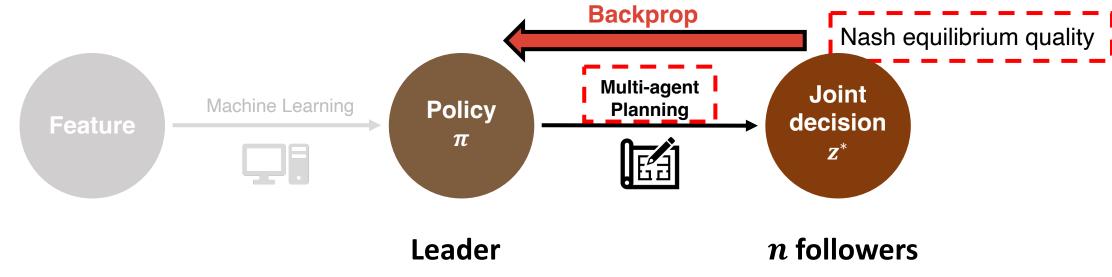
Applications

Wildlife conservation

Cybersecurity

Public health





Algorithm

• Run gradient descent to optimize Nash equilibrium quality

Main idea

- Differentiability of Nash equilibrium and multi-agent planning
- Concatenate all the KKT conditions: $KKTs = [KKT_1, KKT_2, ..., KKT_n]$

Bilevel optimization

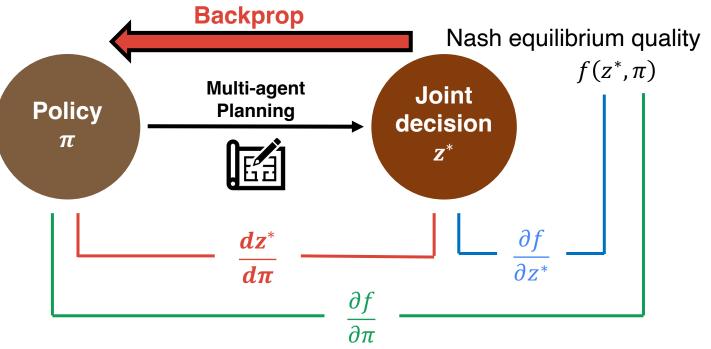
 $\max_{\pi \in \Pi} f(z^*, \pi)$ s.t. $z^* = \mathcal{O}(\pi), g(z^*, \pi) \le 0$

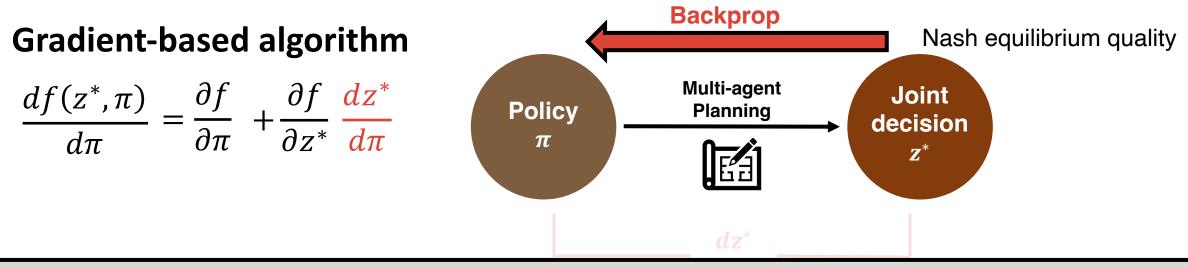
where $\mathcal{O}: \Pi \to Z^*$ is an oracle that returns a Nash equilibrium

Gradient-based algorithm

• Challenge: gradient computation

$$\frac{df(z^*,\pi)}{d\pi} = \frac{\partial f}{\partial \pi} + \frac{\partial f}{\partial z^*} \frac{dz^*}{d\pi}$$





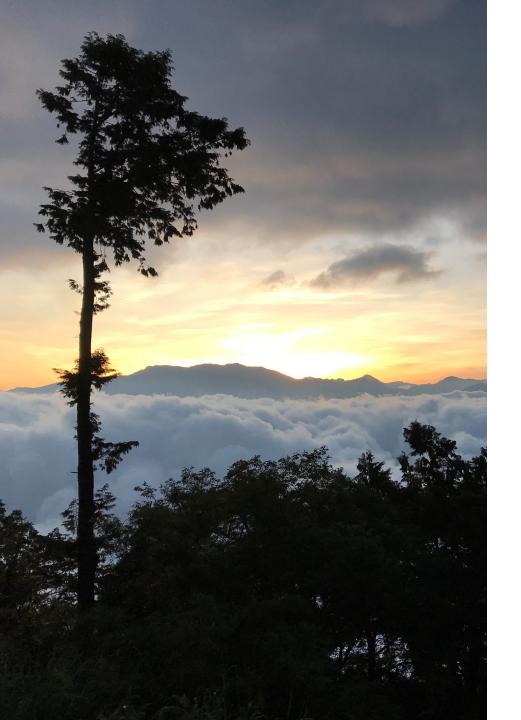
Takeaway: differentiability of Nash equilibria and its application to Stackelberg games

$$KKTs(z^*,\pi) = 0 \qquad \Rightarrow \frac{\partial KKTs}{\partial \pi} + \frac{\partial KKTs}{\partial z} \frac{dz^*}{d\pi} = 0 \qquad \Rightarrow \frac{dz^*}{d\pi} = \left(\frac{\partial KKTs}{\partial z}\right)^{-1} \frac{\partial KKTs}{\partial \pi}$$

Outline

- Decision-focused Learning (Recap)
- Scalability and Applications in Different Optimization Problems
 - Convex/non-convex optimization
 - Sequential optimization
 - Multi-agent optimization

Summary of Differentiable Optimization



Summary

Differentiable optimization is a powerful primitive to embed non-trivial modeling knowledge to use within larger systems

- Theory and engineering foundation
- Scalability in larger systems
- Extension to more optimization problems

Scalability Challenges and Solutions to Differentiable Optimization

Kai Wang • Harvard University

Differentiable Surrogate: Automatically Learning Compact Surrogates [NeurIPS 2020] Differentiable Block Sampling: Scalable Game-focused Learning [AAMAS 2020] Differentiable RL: Learning MDPs from Features [NeurIPS 2021] Differentiable Whittle Index: DFL in Restless Bandits [arXiv 2022] Differentiable Equilibria: Coordinating Followers to Reach Better Equilibria [AAAI 2022]

Joint work with Bryan Wilder, Sanket Shah, Lily Xu, Aditya Mate, Haipeng Chen, Andrew Perrault, Aparna Taneja, Michael K Reiter, Finale Doshi-Velez, Milind Tambe

> Kai Wang (<u>kaiwang@g.harvard.edu</u>) Andrew Perrault (<u>perrault.17@osu.edu</u>) Brandon Amos (<u>bda@meta.com)</u>